网站首页 > 技术文章 正文
一、前言
在网络编程中,阻塞、非阻塞、同步、异步经常被提到。unix网络编程第一卷第六章专门讨论五种不同的IO模型,Stevens讲的非常详细,我记得去年看第一遍时候,似懂非懂,没有深入理解。
Stevens在文章中一共比较了五种IO Model:
blocking IO
nonblocking IO
IO multiplexing
signal driven IO
asynchronous IO
由于signal driven IO在实际中并不常用,所以我这只提及剩下的四种IO Model。
再说一下IO发生时涉及的对象和步骤。
对于一个network IO (这里我们以read举例),它会涉及到两个系统对象,一个是调用这个IO的process (or thread),另一个就是系统内核(kernel)。当一个read操作发生时,它会经历两个阶段:
- 1 等待数据准备 (Waiting for the data to be ready)
- 2 将数据从内核拷贝到进程中 (Copying the data from the kernel to the process)
记住这两点很重要,因为这些IO Model的区别就是在两个阶段上各有不同的情况。
blocking IO
在linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样:
当用户进程调用了recvfrom这个系统调用,kernel就开始了IO的第一个阶段:准备数据。对于network io来说,很多时候数据在一开始还没有到达(比如,还没有收到一个完整的UDP包),这个时候kernel就要等待足够的数据到来。而在用户进程这边,整个进程就会被阻塞。当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存,然后kernel返回结果,用户进程才解除block的状态,重新运行起来。
所以,blocking IO的特点就是在IO执行的两个阶段都被block了。
non-blocking IO
linux下,可以通过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操作时,流程是这个样子:
从图中可以看出,当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error。从用户进程角度讲 ,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是它可以再次发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存,然后返回。
所以,用户进程其实是需要不断地主动询问kernel数据好了没有。
IO multiplexing
IO multiplexing这个词可能有点陌生,但是如果我说select,epoll,大概就都能明白了。有些地方也称这种IO方式为event driven IO。我们都知道,select/epoll的好处就在于单个process就可以同时处理多个网络连接的IO。它的基本原理就是select/epoll这个function会不断地轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。它的流程如图:
当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。
这个图和blocking IO的图其实并没有太大的不同,事实上,还更差一些。因为这里需要使用两个system call (select 和 recvfrom),而blocking IO只调用了一个system call (recvfrom)。但是,用select的优势在于它可以同时处理多个connection。(多说一句。所以,如果处理的连接数不是很高的话,使用select/epoll的web server不一定比使用multi-threading + blocking IO的web server性能更好,可能延迟还更大。select/epoll的优势并不是对于单个连接能处理得更快,而是在于能处理更多的连接。)
更多Linux内核视频教程文档资料免费领取后台私信【内核】自行获取。
在IO multiplexing Model中,实际中,对于每一个socket,一般都设置成为non-blocking,但是,如上图所示,整个用户的process其实是一直被block的。只不过process是被select这个函数block,而不是被socket IO给block。
Asynchronous I/O
linux下的asynchronous IO其实用得很少。先看一下它的流程:
用户进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它受到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了。
到目前为止,已经将四个IO Model都介绍完了。现在回过头来回答最初的那几个问题:blocking和non-blocking的区别在哪,synchronous IO和asynchronous IO的区别在哪。
先回答最简单的这个:blocking vs non-blocking。前面的介绍中其实已经很明确地说明了这两者的区别。调用blocking IO会一直block住对应的进程直到操作完成,而non-blocking IO在kernel还准备数据的情况下会立刻返回。
在说明synchronous IO和asynchronous IO的区别之前,需要先给出两者的定义。Stevens给出的定义(其实是POSIX的定义)是这样子的:
A synchronous I/O operation causes the requesting process to be blocked until that I/O operation completes;
An asynchronous I/O operation does not cause the requesting process to be blocked;
两者的区别就在于synchronous IO做”IO operation”的时候会将process阻塞。按照这个定义,之前所述的blocking IO,non-blocking IO,IO multiplexing都属于synchronous IO。有人可能会说,non-blocking IO并没有被block啊。这里有个非常“狡猾”的地方,定义中所指的”IO operation”是指真实的IO操作,就是例子中的recvfrom这个system call。non-blocking IO在执行recvfrom这个system call的时候,如果kernel的数据没有准备好,这时候不会block进程。但是,当kernel中数据准备好的时候,recvfrom会将数据从kernel拷贝到用户内存中,这个时候进程是被block了,在这段时间内,进程是被block的。而asynchronous IO则不一样,当进程发起IO 操作之后,就直接返回再也不理睬了,直到kernel发送一个信号,告诉进程说IO完成。在这整个过程中,进程完全没有被block。
各个IO Model的比较如图所示:
经过上面的介绍,会发现non-blocking IO和asynchronous IO的区别还是很明显的。在non-blocking IO中,虽然进程大部分时间都不会被block,但是它仍然要求进程去主动的check,并且当数据准备完成以后,也需要进程主动的再次调用recvfrom来将数据拷贝到用户内存。而asynchronous IO则完全不同。它就像是用户进程将整个IO操作交给了他人(kernel)完成,然后他人做完后发信号通知。在此期间,用户进程不需要去检查IO操作的状态,也不需要主动的去拷贝数据。
最后,再举几个不是很恰当的例子来说明这四个IO Model:
有A,B,C,D四个人在钓鱼:
A用的是最老式的鱼竿,所以呢,得一直守着,等到鱼上钩了再拉杆;
B的鱼竿有个功能,能够显示是否有鱼上钩,所以呢,B就和旁边的MM聊天,隔会再看看有没有鱼上钩,有的话就迅速拉杆;
C用的鱼竿和B差不多,但他想了一个好办法,就是同时放好几根鱼竿,然后守在旁边,一旦有显示说鱼上钩了,它就将对应的鱼竿拉起来;
D是个有钱人,干脆雇了一个人帮他钓鱼,一旦那个人把鱼钓上来了,就给D发个短信。
我结合以上和书总结一下,加以区别,加深理解。
二、数据流向
网络IO操作实际过程涉及到内核和调用这个IO操作的进程。以read为例,read的具体操作分为以下两个部分:
- (1)内核等待数据可读
- (2)将内核读取到的数据拷贝到进程
详细过程如下图所示:
三、网络IO模型详细分析
常见的IO模型有阻塞、非阻塞、IO多路复用,异步。以一个生动形象的例子来说明这四个概念。周末我和女朋友去逛街,中午饿了,我们准备去吃饭。周末人多,吃饭需要排队,我和女朋友有以下几种方案:
(1)我和女友点完餐后,不知道什么时候能做好,只好坐在餐厅里面等,直到做好,然后吃完才离开。
女友本想还和我一起逛街的,但是不知道饭能什么时候做好,只好和我一起在餐厅等,而不能去逛街,直到吃完饭才能去逛街,中间等待做饭的时间浪费掉了。这就是典型的阻塞。网络中IO阻塞如下图所示:
(2)我女友不甘心白白在这等,又想去逛商场,又担心饭好了。所以我们逛一会,回来询问服务员饭好了没有,来来回回好多次,饭都还没吃都快累死了啦。这就是非阻塞。需要不断地询问,是否准备好了。网络IO非阻塞如下图所示:
(3)与第二个方案差不多,餐厅安装了电子屏幕用来显示点餐的状态,这样我和女友逛街一会,回来就不用去询问服务员了,直接看电子屏幕就可以了。这样每个人的餐是否好了,都直接看电子屏幕就可以了,这就是典型的IO多路复用,如select、poll、epoll。网络IO具体模型如下图所示:
4)女友不想逛街,又嫌餐厅太吵了,回家好好休息一下。于是我们叫外卖,打个电话点餐,然后我和女友可以在家好好休息一下,饭好了送货员送到家里来。这就是典型的异步,只需要打个电话说一下,然后可以做自己的事情,饭做好了就送来了。linux提供了AIO库函数实现异步,但是用的很少。目前有很多开源的异步IO库,例如libevent、libev、libuv。异步过程如下图所示:
四、同步与异步
实际上同步与异步是针对应用程序与内核的交互而言的。同步过程中进程触发IO操作并等待或者轮询的去查看IO操作是否完成。异步过程中进程触发IO操作以后,直接返回,做自己的事情,IO交给内核来处理,完成后内核通知进程IO完成。同步与异步如下图所示:
五、阻塞与非阻塞
简单理解为需要做一件事能不能立即得到返回应答,如果不能立即获得返回,需要等待,那就阻塞了,否则就可以理解为非阻塞。详细区别如下图所示:
猜你喜欢
- 2024-10-21 面试官:NIO非阻塞网络编程原理了解吗?一文深度讲解避坑
- 2024-10-21 Java阻塞队列中的异类,SynchronousQueue底层实现原理剖析
- 2024-10-21 超详细的I/O多路复用概念、常用I/O模型、系统调用等介绍
- 2024-10-21 非阻塞同步算法与CAS(比较和交换)无锁算法 - 美因茨
- 2024-10-21 为什么要学IO模型(同步阻塞,异步非阻塞)?
- 2024-10-21 非阻塞同步机制和CAS 治疗青光眼的药物中,降压机制是使阻塞房角开放的是
- 2024-10-21 一文彻底搞定(阻塞/非阻塞/同步/异步)网络IO、并发编程模型
- 2024-10-21 一文搞懂什么是阻塞IO、信号驱动IO、Reactor模型、零拷贝
- 2024-10-21 Java面试常见问题:阻塞与非阻塞,同步与异步
- 2024-10-21 聊聊Java BIO(同步阻塞IO)、NIO(非阻塞IO)、AIO(异步IO)
你 发表评论:
欢迎- 11-19零基础学习!数据分析分类模型「支持向量机」
- 11-19机器学习 | 算法笔记(三)- 支持向量机算法以及代码实现
- 11-19我以前一直没有真正理解支持向量机,直到我画了一张图
- 11-19研一小姑娘分享机器学习之SVM支持向量机
- 11-19[机器学习] sklearn支持向量机
- 11-19支持向量机
- 11-19初探支持向量机:用大白话解释、原理详解、Python实现
- 11-19支持向量机的核函数
- 最近发表
- 标签列表
-
- oraclesql优化 (66)
- 类的加载机制 (75)
- feignclient (62)
- 一致性hash算法 (71)
- dockfile (66)
- 锁机制 (57)
- javaresponse (60)
- 查看hive版本 (59)
- phpworkerman (57)
- spark算子 (58)
- vue双向绑定的原理 (68)
- springbootget请求 (58)
- docker网络三种模式 (67)
- spring控制反转 (71)
- data:image/jpeg (69)
- base64 (69)
- java分页 (64)
- kibanadocker (60)
- qabstracttablemodel (62)
- java生成pdf文件 (69)
- deletelater (62)
- com.aspose.words (58)
- android.mk (62)
- qopengl (73)
- epoch_millis (61)
本文暂时没有评论,来添加一个吧(●'◡'●)