计算机系统应用教程网站

网站首页 > 技术文章 正文

DenseNet 密集连接卷积网络

btikc 2024-09-03 11:19:50 技术文章 12 ℃ 0 评论

DenseNet(Densely Connected Convolutional Network)是一种深度学习架构,由Gao Huang、Zhuang Liu、Kilian Q. Weinberger和Laurens van der Maaten在2016年提出。DenseNet的核心特点是其密集连接(Dense Connection)或称为特征重用(Feature Reuse),这种设计显著减少了梯度消失问题,并提高了训练过程中的信息流动。


Python代码实现

以下是使用PyTorch实现的DenseNet的一个简化版本:

import torch
import torch.nn as nn
import torch.nn.functional as F

class DenseBlock(nn.Module):
    def __init__(self, in_channels, growth_rate):
        super(DenseBlock, self).__init__()
        self.convs = nn.ModuleList()
        for i in range(growth_rate):
            self.convs.append(nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=False))
            in_channels += in_channels
        self.ln = nn.BatchNorm2d(in_channels)

    def forward(self, x):
        for conv in self.convs:
            out = F.relu(conv(x))
            x = torch.cat([x, out], 1)
        out = self.ln(x)
        return out

class TransitionDown(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(TransitionDown, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        self.pool = nn.AvgPool2d(kernel_size=2, stride=2)

    def forward(self, x):
        out = self.conv(x)
        out = self.pool(out)
        return out

class TransitionUp(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(TransitionUp, self).__init__()
        self.up = nn.Upsample(scale_factor=2)
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, bias=False)

    def forward(self, x, skip_input):
        x = self.up(x)
        x = torch.cat([x, skip_input], 1)
        out = self.conv(x)
        return out

class DenseNet(nn.Module):
    def __init__(self, num_classes=10):
        super(DenseNet, self).__init__()
        self.initial_conv = nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False)
        self.dense_blocks = nn.ModuleList()
        self.transition_downs = nn.ModuleList()
        self.transition_ups = nn.ModuleList()
        self.final_dense_block = nn.ModuleList()
        self.classifier = nn.Linear(64 * 2 * 2, num_classes)

        # First dense block
        self.dense_blocks.append(DenseBlock(64, 64))

        # Add more dense blocks, transition down and up blocks as needed
        # ...

        # Final dense block
        self.final_dense_block.append(DenseBlock(64 * 2 * 2, 64))

    def forward(self, x):
        x = self.initial_conv(x)
        features = [x]
        for dense_block in self.dense_blocks:
            x = dense_block(x)
            features.append(x)

        for i, transition_down in enumerate(self.transition_downs):
            x = transition_down(x)

        for i, transition_up, feature in enumerate(zip(self.transition_ups, features)):
            x = transition_up(x, feature)

        x = self.final_dense_block[-1](x)
        x = F.avg_pool2d(x, x.size()[2:])
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x

# Example usage:
# model = DenseNet(num_classes=10)
# input_tensor = torch.rand(1, 3, 32, 32)
# output = model(input_tensor)

在这个实现中,我们定义了一个简化的DenseNet,其中包括一个初始卷积层、多个密集连接块(DenseBlock)、过渡下采样层(TransitionDown)和过渡上采样层(TransitionUp)。最后,通过一个全连接层(classifier)将特征映射到目标类别。

请注意,这只是一个基本的DenseNet实现,实际应用中可能需要根据具体任务调整网络结构和参数。此外,为了获得更好的性能,可能还需要添加批量归一化层、使用不同的激活函数、调整卷积核大小等。在实际应用中,建议参考现有的DenseNet实现和相关文献,以获取更详细的实现指导。

Tags:

本文暂时没有评论,来添加一个吧(●'◡'●)

欢迎 发表评论:

最近发表
标签列表