网站首页 > 技术文章 正文
对于人眼来说,很容易看出两个给定图像的质量有多相似。例如下图将各种空间噪声添加到图片中,我们很容易将它们与原始图像进行比较,并指出其中的扰动和不规则性。但是在机器学习中我们需要数学表达式来量化这种差异。
在本文中,我们将看到如何使用一行代码实现以下相似性度量,并对比各相似度的评分:
Mean Squared Error (MSE)
Root Mean Squared Error (RMSE)
Peak Signal-to-Noise Ratio (PSNR)
Structural Similarity Index (SSIM)
Universal Quality Image Index (UQI)
Multi-scale Structural Similarity Index (MS-SSIM)
Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS)
Spatial Correlation Coefficient (SCC)
Relative Average Spectral Error (RASE)
Spectral Angle Mapper (SAM)
Visual Information Fidelity (VIF)
sewar库可用于实现所有这些指标(以及其他一些指标)。
开始安装sewar:
pip install sewar
首先我们导入相应的库
from sewar.full_ref import mse, rmse, psnr, uqi, ssim, ergas, scc, rase, sam, msssim, vifp
这些模块很容易使用,可以直接调用,如下所示。
print("MSE: ", mse(blur,org))
print("RMSE: ", rmse(blur, org))
print("PSNR: ", psnr(blur, org))
print("SSIM: ", ssim(blur, org))
print("UQI: ", uqi(blur, org))
print("MSSSIM: ", msssim(blur, org))
print("ERGAS: ", ergas(blur, org))
print("SCC: ", scc(blur, org))
print("RASE: ", rase(blur, org))
print("SAM: ", sam(blur, org))
print("VIF: ", vifp(blur, org))
对于每一种噪声方法,我们可以看到下面的相似结果。“Original”一栏显示的是原始图像与自身比较后的分数,以便看到理想的分数。
每一种噪声方法的值都与上面图像网格直观获得的值相对应。例如,Salt and Pepper和Poisson方法添加的噪声是肉眼不容易看到的,需要我们通过对图像的肉眼近距离观察发现。在相似度评分中,我们可以看到,与其他噪声方法相比,Salt and Pepper和Poisson的值更接近于理想值。类似的观察结果也可以从其他噪声方法和指标中得到。
从结果看来,ERGAS、MSE、SAM和VIFP能够足够敏感地捕捉到添加的噪声并返回放大的分数。
但这种简单的量化有什么用呢?
最常见的应用是重新生成或重建的图像与其原始的、干净的版本进行比较。GAN最近在去噪和清理图像方面做得非常好,这些指标可以用来衡量模型在视觉观察之外实际重建图像的效果。利用这些相似度指标来评估大量生成图像的再生质量,可以减少人工可视化评估模型的工作。
此外,相似度度量也可以判断和强调图像中是否存在的对抗性攻击。因此,这些分数可以用来量化这些攻击带来的干扰量。
作者:Param Raval
猜你喜欢
- 2024-10-25 同学快来-评论区回复|构建预测模型 # #数据处理的公司
- 2024-10-25 回归or分类?线性or逻辑?它们到底有什么不同?
- 2024-10-25 慕课网Python入门学习教程价值¥499元10G教程免费分享
- 2024-10-25 最强总结,机器学习必会的评估指标
- 2024-10-25 用Python的Scikit-Learn库实现线性回归
- 2024-10-25 一文读懂回归模型准确度评价指标:R-square, AIC, BIC, Cp
- 2024-10-25 MLAP2-机器学习项目实战2-Python实现岭回归算法模型
- 2024-10-25 【Python机器学习系列】梯度提升集成:LGBM与XGB组合预测油耗
- 2024-10-25 机器学习常用损失函数总览——基本形式、原理及特点
- 2024-10-25 数据分析-多项式回归分析Python 多项式回归代码
你 发表评论:
欢迎- 最近发表
-
- 吴谨言专访大反转!痛批耍大牌后竟翻红,六公主七连发力显真诚
- 港股2月28日物业股涨幅榜:CHINAOVSPPT涨1.72%位居首位
- 港股2月28日物业股午盘:CHINAOVSPPT涨1.72%位居首位
- 港股3月2日物业股涨幅榜:CHINAOVSPPT涨1.03%位居首位
- 港股3月2日物业股午盘:CHINAOVSPPT涨1.03%
- 天赋与心痛的背后:邓鸣贺成长悲剧引发的深刻反思
- 冯小刚女儿徐朵追星范丞丞 同框合照曝光惹人羡,回应网友尽显亲民
- “资本大佬”王冉:51岁娶小17岁童瑶,并承诺余生为娇妻保驾护航
- 港股3月2日物业股午盘:CHINAOVSPPT涨1.03%位居首位
- 「IT之家开箱」vivo S15 图赏:双镜云窗,盛夏风光
- 标签列表
-
- oraclesql优化 (66)
- 类的加载机制 (75)
- feignclient (62)
- 一致性hash算法 (71)
- dockfile (66)
- 锁机制 (57)
- javaresponse (60)
- 查看hive版本 (59)
- phpworkerman (57)
- spark算子 (58)
- vue双向绑定的原理 (68)
- springbootget请求 (58)
- docker网络三种模式 (67)
- spring控制反转 (71)
- data:image/jpeg (69)
- base64 (69)
- java分页 (64)
- kibanadocker (60)
- qabstracttablemodel (62)
- java生成pdf文件 (69)
- deletelater (62)
- com.aspose.words (58)
- android.mk (62)
- qopengl (73)
- epoch_millis (61)
本文暂时没有评论,来添加一个吧(●'◡'●)