网站首页 > 技术文章 正文
机器之心报道
机器之心编辑部
满满一黑板的「天书」,会是「猜想界皇冠」破解的开始吗?
昨天,有关试证黎曼猜想的新研究又一次引爆了数学圈。
MIT 数学教授 Larry Guth 和牛津大学数学研究所教授、2022 菲尔兹奖得主 James Maynard 撰写论文《New large value estimates for Dirichlet polynomials》,首次对数学家 Albert Ingham 在 1940 年左右关于黎曼 ζ 函数零点(以及更广泛地控制各种 Dirichlet 级数的大值)的经典界限做出了实质性改进。
论文地址:https://arxiv.org/pdf/2405.20552
对于 Guth 和 Maynard 的新突破,知名华裔数学家陶哲轩评价道:「他们在研究黎曼猜想方面取得了重要进展,尽管离解决这一历史悠久的数学问题还有很长的路要走 。」
今天,两位论文作者 Larry Guth 和 James Maynard 分别做了主题为《狄利克雷多项式大值的新界限,第一部分》以及《狄利克雷多项式大值的新界限,第二部分》的讲座。
狄利克雷多项式界限在与素数分布相关的几个问题中发挥重要作用,它们可以用来限制黎曼 zeta 函数在垂直条带中的零点数量,这与短间隔内的素数分布有关。狄利克雷多项式可以表示为:
主要问题在于 D (t) 超水平集的大小。作者进行归一化,使得系数范数最多为 1,然后研究超水平集 | D (t)| > N^\sigma,其中 sigma 指数介于 1/2 和 1 之间。
其中对于较大的 sigma 值,数学家 Montgomery 证明了该超水平集具有非常强的界限。但对于 sigma \le 3/4,最知名的界限来自非常简单的正交性论证(而且这些界限似乎并不尖锐)。作者将已知的 sigma 界限改进到接近 3/4,相关工作正在进行中。
James Maynard 讲座介绍
讲座一开始,James Maynard 引用了 Freeman Dyson 的著名比喻,将数学家分为鸟和青蛙。鸟喜欢从高处俯瞰全局,思考宏观的数学结构;青蛙则喜欢深入具体的细节,解决具体的问题。Maynard 自认是一只青蛙,更注重细节问题的解决。
在演讲中,Maynard 主要介绍了他和 Larry 共同研究成果,特别是关于 Dirichlet 多项式的大值问题。这些研究在解析数论中具有重要意义。
Maynard 希望通过这次演讲,更好的展示他们的研究结果、这些结果如何融入解析数论的整体背景,以及一些关键的证明思路。
为了将晦涩难懂的数学问题解释的更加清楚,Maynard 采用板书的形式进行讲解,并写下了满屏的推导公式:
整场演讲长达 1 小时 12 分,内容输出非常密集。著名数学家陶哲轩简单明了的概括了这次研究的新进展, 解释了从黎曼猜想到当前最新进展的逻辑推导链条,展示了每个假设和估计之间的关系及其在解析数论中的重要性。
James Maynard 完整视频链接:https://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650920885&idx=2&sn=6d5d0b37a7b6e32ccee243d04ba7d8ff&chksm=84e413cbb3939add1ddfd441ee61d6e8a595613f502214e9831d3909206c940285dca4797463&token=167504815&lang=zh_CN#rd
Larry Guth 讲座介绍
Larry Guth 表示, James Maynard 的第一部分讲座介绍了狄利克雷多项式的问题、工作以及关键思想。他此次讲座将进一步剖析证明过程,包括解释问题的背景、证明的细节。
他首先描述了问题的设置,即分析狄利克雷多项式大值的新界限,狄利克雷多项式范数在特定集合上的大小,并讨论了已有的简单估计方法(如均值定理)及它们的局限性。
然后他介绍了自己工作提出的新定理,提出在某些参数范围内对原有估计进行了改进。此外他还展示了近似反例的存在,证明了简单估计方法的局限性,并讨论了特定情况下可能存在的精确转变点。
接下来,他讨论了在处理狄利克雷多项式问题时所使用的工具,并指出这些工具无法区分近似反例和原始问题的设定。他对比了两种不同的频率设置,探讨了每个设置的特点。通过分析低能量和高能量两种情况,他展示了如何使用矩阵的奇异值和牛津大学著名数学家 Heath-Brown 的工作来获得更好的估计结果。
其中在低能量情况下,他强调了傅里叶变换的使用和能量的定义;在高能量情况下,他则利用加法结构来改进估计。最后,他总结了这些方法的有效性。
Larry Guth 完整视频链接:https://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650920885&idx=2&sn=6d5d0b37a7b6e32ccee243d04ba7d8ff&chksm=84e413cbb3939add1ddfd441ee61d6e8a595613f502214e9831d3909206c940285dca4797463&token=167504815&lang=zh_CN#rd
辅助工具:ChatGPT
参考链接:
https://www.ias.edu/video/new-bounds-large-values-dirichlet-polynomials-part-1
- 上一篇: 浅谈PCA主成分分析 什么是pca主成分分析
- 下一篇: 3D点云平面拟合算法 3d点云项目
猜你喜欢
- 2024-10-28 编程大佬告诉你人工智能需要学习哪些数学知识
- 2024-10-28 NumPy之:多维数组中的线性代数 多维数组元素之间的关系是线性的吗
- 2024-10-28 相机模型与张氏标定 相机标定的原理
- 2024-10-28 C代码快速傅里叶变换-分类和推理-常微分和偏微分方程
- 2024-10-28 认识“模拟进化算法” 模拟进化怪物
- 2024-10-28 3D点云平面拟合算法 3d点云项目
- 2024-10-28 浅谈PCA主成分分析 什么是pca主成分分析
- 2024-10-28 【杂谈】cholesky分解——对称正定矩阵最好的分解
- 2024-10-28 降维算法: 奇异值分解SVD 降维的算法
- 2024-10-28 「周末AI课堂」线性降维方法(理论)|机器学习你会遇到的“坑”
你 发表评论:
欢迎- 最近发表
- 标签列表
-
- oraclesql优化 (66)
- 类的加载机制 (75)
- feignclient (62)
- 一致性hash算法 (71)
- dockfile (66)
- 锁机制 (57)
- javaresponse (60)
- 查看hive版本 (59)
- phpworkerman (57)
- spark算子 (58)
- vue双向绑定的原理 (68)
- springbootget请求 (58)
- docker网络三种模式 (67)
- spring控制反转 (71)
- data:image/jpeg (69)
- base64 (69)
- java分页 (64)
- kibanadocker (60)
- qabstracttablemodel (62)
- java生成pdf文件 (69)
- deletelater (62)
- com.aspose.words (58)
- android.mk (62)
- qopengl (73)
- epoch_millis (61)
本文暂时没有评论,来添加一个吧(●'◡'●)