网站首页 > 技术文章 正文
机器之心报道
参与:杜伟、张倩
前几天,OpenAI 发布了 7.74 亿参数量的新一版 GPT-2,并表示将在几个月之内发布 15.58 亿参数量的完整版本。但还没等到完整版官宣,有人就已经等不及了,索性自己动手复制了一个 15 亿参数量的 GPT-2,并将其命名为 OpenGPT-2。项目作者是来自布朗大学的两位硕士研究生,他们复制 GPT-2 的花费大约是 5 万美元。
项目的两位作者:Aaron Gokaslan 和 Vanya Cohen 。
读者可以在 Google Colab 上访问该模型并生成文本。
Google Colab 地址:https://colab.research.google.com/drive/1esbpDOorf7DQJV8GXWON24c-EQrSKOit
模型权重:https://drive.google.com/drive/u/0/folders/1KfK5MXtvgH8C615UUZoKPIUVJYIdJxX1
作者表示,复制 GPT-2 没有那么难,论文中的很多结果都是他们两人可以复制的,并且二人并没有语言建模的经验。所以,只要你感兴趣(壕),你也能自己复制一份。
复制方法和成本
OpenGPT-2 的实现基于 Grover 模型,通过修改它们的代码库来达到 GPT-2 的语言建模训练目标。由于 Grover 模型是在类似的大型语料库上进行训练,所以很多代码和超参数很容易重复使用。他们也没有对 Grover 的超参数进行大量修改。
至于成本嘛,他们使用自己的代码从零开始训练 GPT-2 模型大约花费了 5 万美元。但需要注意的是,5 万美元只是云计算的估算成本,没有包含更细微的内在成本(在其他效率更低的易用计算资源上训练模型的效果会更差)。
数据集
OpenAI GPT-2 的原始论文中有对清理数据集的详解。在该论文中,Open AI 的研究人员用到了一个名为 WebText 的数据集,其中包含数百万个网页。
论文地址:https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
如 WebText 一样,本文中的两位研究者首先解析 Reddit 上 3 个 up-vote 以上的所有链接。同时,他们利用了 Pushshift Reddit scrape 数据集,该数据集集合了持续更新的 Reddit 帖子、评论和有关元数据。然后,作者对这些链接进行过滤,删除那些不太可能包含有用文本或 HTML 的文件类型(即视频文件、PDF 和 CSS 格式文件)的直接链接。
此外,作者还过滤了网页,以删除被各种评估基准和数据集所使用的 Wikipedia 内容。他们并不能确定自己的过滤方法是否符合 OpenAI 的标准。因此,他们使用 Newspaper Python 库从 HTML 网页上提取文本,然后使用 fastText Python 库只过滤掉英文文本。
具体来说,作者使用了 WhatTheLang python Wrapper。他们利用局部敏感哈希(locally sensitive hashing,LSH)删除这些文档。最后,他们将这些文档散列到了 5-gram 的集合中,并删除了相似度阈值大于 0.5 的所有文档。
作者还从数据集中删除了 token 数少于 128 的文档。这些短文档往往质量较低。作者将这一数据集作为 OpenWebTextCorpus 发布。
数据集链接:https://skylion007.github.io/OpenWebTextCorpus/
在编码数据集时,作者使用了 Radford 等人发布的适用于小模型的 Binary Pattern 编码器。他们还利用 OpenWebText 网页爬取代码库的修订版作为自身数据集集合的起始点。
从公开发布的 WebText 的 26 万篇文档的集合来看,作者发现所有文档的双字节编码(BPE)长度最小为 40,最大为 1024。而 OpenWebText 的不同之处在于作者将文档长度的最低值设为 128 个 token(替代 BPE),并且不限制文档最大长度。此外,原始 WebTextCorpus 是在这些样本可用之前发布的,因此作者没有使用这些信息来生成清理启发式。
尽管在训练分布上存在差异,作者依然得出了与多数数据集接近的困惑度。
效果
两位作者在 medium 博客中展示了 OpenGPT-2 的生成效果。他们提供给模型的提示为:「Recycling is good for the world. NO! YOU COULD NOT BE MORE WRONG!!」,输入模型之后得到了以下输出:
reddit 网友也根据作者给出的连接进行了测试,并将测试结果与 OpenAI 前几天公布的 7.74 亿参数量版本进行了对比。有人表示:
我使用相同的提示分别测试了 OpenGPT-2 和 OpenAI 的 GPT-2 7.74 亿参数版本,结果还是 OpenAI 的输出效果更好,所以作者的复制过程或许存在一些问题。
当然,也有人认为 OpenGPT-2 的效果更好:
我认为作者的 OpenGPT-2 效果优于 OpenAI 的 GPT-2 7.74 亿参数版本,但还不足以用来制造令人信服的假新闻。几次尝试输入「Shocking revelation! Vladimir Putin and Donald Trump are」,我得出了以下效果最佳的文本。该文本能够更长时间地保持语义连贯性,语句也更有意义,但还是比较容易被识破。但不可否认,OpenGPT-2 对研究确实很有帮助。但我还有一个疑问,OpenGPT-2 到底只是把它读过的文本随机组合到一起,还是真正地创造出了新文本。
至于 OpenGPT-2 的生成效果究竟如何,大家可以根据文中提供的链接测试一下。
参考链接:
https://www.reddit.com/r/MachineLearning/comments/cu9xgi/p_opengpt2_we_replicated_gpt2_because_you_can_too/
https://medium.com/@vanya_cohen/opengpt-2-we-replicated-gpt-2-because-you-can-too-45e34e6d36dc
猜你喜欢
- 2024-11-04 Facebook正研发AI翻译技术 facebook generation的翻译
- 2024-11-04 (完结篇)简析一个比Flask和Tornado更高性能的API 框架FastAPI
- 2024-11-04 谷歌云TensorFlow性价比测试:GPU不是赢家,CPU多也不是赢家
- 2024-11-04 云CPU上的TensorFlow基准测试:优于云GPU的深度学习
- 2024-11-04 谷歌云TensorFlow性价比测试:CPU比GPU表现更好
- 2024-11-04 使用Facebook的FastText简化文本分类
- 2024-11-04 FastText模型训练指南:为产品经理量身定制
你 发表评论:
欢迎- 最近发表
-
- 在 Spring Boot 项目中使用 activiti
- 开箱即用-activiti流程引擎(active 流程引擎)
- 在springBoot项目中整合使用activiti
- activiti中的网关是干什么的?(activiti包含网关)
- SpringBoot集成工作流Activiti(完整源码和配套文档)
- Activiti工作流介绍及使用(activiti工作流会签)
- SpringBoot集成工作流Activiti(实际项目演示)
- activiti工作流引擎(activiti工作流引擎怎么用)
- 工作流Activiti初体验及在数据库中生成的表
- Activiti工作流浅析(activiti6.0工作流引擎深度解析)
- 标签列表
-
- oraclesql优化 (66)
- 类的加载机制 (75)
- feignclient (62)
- 一致性hash算法 (71)
- dockfile (66)
- 锁机制 (57)
- javaresponse (60)
- 查看hive版本 (59)
- phpworkerman (57)
- spark算子 (58)
- vue双向绑定的原理 (68)
- springbootget请求 (58)
- docker网络三种模式 (67)
- spring控制反转 (71)
- data:image/jpeg (69)
- base64 (69)
- java分页 (64)
- kibanadocker (60)
- qabstracttablemodel (62)
- java生成pdf文件 (69)
- deletelater (62)
- com.aspose.words (58)
- android.mk (62)
- qopengl (73)
- epoch_millis (61)
本文暂时没有评论,来添加一个吧(●'◡'●)