网站首页 > 技术文章 正文
分享兴趣,传播快乐,
增长见闻,留下美好。
亲爱的您,这里是LearingYard学苑!
今天小编为大家带来“精读期刊论文《基于MARCOS的二维语言直觉多属性群决策方法》的5.1基于BWM和信息熵的混合权重模型”。
欢迎您的访问!
Share interest, spread happiness,
increase knowledge, and leave beautiful.
Dear, this is the LearingYard Academy!
Today, the editor brings the "the 5.1 mixed weight model based on BWM and information entropy of the journal paper 'MARCOs-based two-dimensional language intuitive multi-attribute group decision Method'".
Welcome to visit!
一、内容摘要(Content summary)
本期推文将从思维导图、精读内容、知识补充三个方面介绍精读期刊论文《基于MARCOS的二维语言直觉多属性群决策方法》的基于BWM和信息熵的混合权重模型。
This issue of tweets will introduce the mixed weight model based on BWM and information entropy of the intensive reading journal paper "MARCOs-based two-dimensional language intuitive multi-attribute group decision Method" from three aspects: mind mapping, intensive reading content, and knowledge supplement.
二、思维导图(Mind Mapping)
三、精读内容(Detailed Reading Content)
在该章节的第一小节开始之前,作者首先对本文的多属性决策问题进行了问题假设并且给出了其流程图。
Before the first section of this chapter, the author first makes the problem hypothesis for the multi-attribute decision problem in this paper and gives its flow chart.
接下来将为大家介绍获取了决策评价信息后的阶段2的步骤,即基于BWM和信息熵的混合权重模型。
Next, we will introduce the steps of stage 2 after obtaining the decision evaluation information, that is, the mixed weight model based on BWM and information entropy.
首先是利用最优最劣方法(BWM)计算主观权重。具体步骤为:(1)确定最优和最劣属性;(2)利用1-9标度打分,确定最优属性与所有属性的偏好程度;(3)利用1-9标度打分,确定所有属性与最劣属性的偏好程度。(4)构建数学规划模型计算主观属性权重;(5)计算一致性比例并进行比较,如果符合则输出权重,不符合则转至步骤2进行调整。
First, the subjective weight is calculated using the best and worst method (BWM). The specific steps are: (1) Determine the optimal and worst attributes; (2) Using the 1-9 scale score to determine the preference degree of the optimal attribute and all attributes; (3) Use 1-9 scale scores to determine the degree of preference between all attributes and the worst attributes. (4) Construct mathematical programming model to calculate subjective attribute weight; (5) Calculate the consistency ratio and compare. If yes, output the weight; if no, go to Step 2 for adjustment.
然后是利用熵权法计算客观权重。具体步骤为:(1)将二维语言决策变量(2-DLIFV)评价矩阵转化为精确数评价矩阵;(2)计算各方案关于属性的熵;(3)计算属性的客观权重。
Then the objective weight is calculated by entropy weight method. The specific steps are as follows: (1) the evaluation matrix of 2-DLIFV is transformed into the exact number evaluation matrix; (2) Calculate the entropy of attributes of each scheme; (3) Calculate the objective weight of the attribute.
在得到属性的主、客观权重之后,利用主客观加权计算的方法得到混合权重。
After the subjective and objective weights of attributes are obtained, the mixed weights are obtained by using the subjective and objective weighting method.
四、知识补充——1-9标度(Knowledge Supplement - Scale 1-9)
1-9标度(也称为Liker特尺度)是一种常用的量表形式,用于评估人们对某一事物、观点或情感的态度或意见的程度。这种标度通常在问卷调查、满意度调查以及心理学研究中被广泛使用。
The 1-9 scale (also known as the Liker special scale) is a form of scale commonly used to assess the extent to which people have an attitude or opinion about a thing, idea, or emotion. This scale is commonly used in questionnaires, satisfaction surveys, and psychological studies.
今天的分享就到这里了,
如果您对文章有独特的想法,
欢迎给我们留言。
让我们相约明天,
祝您今天过得开心快乐!
That's all for today's sharing.
If you have a unique idea about the article,
please leave us a message,
and let us meet tomorrow.
I wish you a nice day!
参考资料:ChatGPT、百度百科
参考文献:
许雷, 刘熠, 刘芳等. 基于MARCOS的二维语言直觉多属性群决策方法 [J]. 模糊系统与数学, 2022, 36(5): 128-141.
本文由LearningYard学苑整理并发出,如有侵权请在后台留言!
文案| Ann
排版| Ann
审核| 姜疯雨火
猜你喜欢
- 2024-11-07 论文写作思路:关于公司财务风险预警研究
- 2024-11-07 配电网自愈控制领域,设备故障概率和电网运行风险的差异控制方法
- 2024-11-07 面板模型进行熵值法分析 面板数据中三种模型如何选择
- 2024-11-07 基于熵权法对TOPSIS模型的修正 熵权法和topsis结合
- 2024-11-07 电网技术领域,电力专变客户电价响应度确定方法及终端设备
- 2024-11-07 数学建模——抢险救援问题 数学建模消防员救火
- 2024-11-07 31个省份共同富裕指数原始数据 计算结果(2005-2022
- 2024-11-07 基于MATLAB的熵权法求权重App#MATLAB
- 2024-11-07 基于MATLAB的熵权法求权重App matlab熵权法计算步骤
- 2024-11-07 权重计算相关方法总结 权重算法是什么意思
你 发表评论:
欢迎- 最近发表
- 标签列表
-
- oraclesql优化 (66)
- 类的加载机制 (75)
- feignclient (62)
- 一致性hash算法 (71)
- dockfile (66)
- 锁机制 (57)
- javaresponse (60)
- 查看hive版本 (59)
- phpworkerman (57)
- spark算子 (58)
- vue双向绑定的原理 (68)
- springbootget请求 (58)
- docker网络三种模式 (67)
- spring控制反转 (71)
- data:image/jpeg (69)
- base64 (69)
- java分页 (64)
- kibanadocker (60)
- qabstracttablemodel (62)
- java生成pdf文件 (69)
- deletelater (62)
- com.aspose.words (58)
- android.mk (62)
- qopengl (73)
- epoch_millis (61)
本文暂时没有评论,来添加一个吧(●'◡'●)