计算机系统应用教程网站

网站首页 > 技术文章 正文

Python实现机器学习算法——线性支持向量机

btikc 2024-09-03 11:35:25 技术文章 15 ℃ 0 评论

在昨天的文章中,我们探讨了线性可分情况下的支持向量机模型。本章我们继续探讨svm的第二种情况,线性支持向量机。

何谓线性支持呢?就是训练数据中大部分实例组成的样本集合是线性可分的,但有一些特异点的存在造成了数据线性不可分的状态,在去除了这些特异点之后,剩下的数据组成的集合便是线性可分的。



原始问题

我们可以在线性kefen支持向量机的基础上,推导线性支持向量机的基本原理。假设训练数据线性不可分,这意味着某些样本点不满足此前线性可分中的函数间隔大于1的约束条件,

线性支持向量机这里的处理方法是对每个实例引入一个松弛变量,使得函数间隔加上松弛变量大于等于1。对应于线性可分时的硬间隔最大化(hard margin svm),线性支持向量机可称为软间隔最大化问题(soft margin svm)。

因而线性支持向量机就可以形式化为一个tu二次规划问题:


其中C>0为惩罚参数,表示对误分类的惩罚程度。最小化该目标函数可包含两层含义:既要使得间隔最大化也要使得误分类点个数最少,C即为二者的调和系数。

再来看线性支持向量机的对偶问题。首先定义拉格朗日的函数如下:

由上一讲的推导可知,对偶问题为拉格朗日函数的极大极小问题。基于该拉格朗日函数对w、b和keci求偏导:

由上三式可得:

将上述三个式子再带回到拉格朗日函数中:



于是便可得到线性支持向量机的对偶问题:

由KKT条件:

计算可得:


以上便是线性支持向量机,也即软间隔最大化对偶问题的推导过程。



cvxopt

本节将使用Python的凸优化求解的第三方库cvxopt实现线性支持向量机。先对该库进行了一个简单介绍。经典的二次规划问题可表示为如下形式:


假设要求解决如下二次规划问题:

将目标函数和约束条件写成矩阵形式:

基于cvxopt包求解上述问题如下:

import numpy
from cvxopt import matrix
from cvxopt import solvers
# 定义二次规划参数
P = matrix([[1.0,0.0],[0.0,0.0]])
q = matrix([3.0,4.0])
G = matrix([[-1.0,0.0,-1.0,2.0,3.0],[0.0,-1.0,-3.0,5.0,4.0]])
h = matrix([0.0,0.0,-15.0,100.0,80.0])
# 构建求解
sol = solvers.qp(P,q,G,h)


# 获取最优值
print(sol['x'],sol['primal objective'])



基于cvxopt的线性支持向量机实现

导入相关package:

import numpy as np
from numpy import linalg
import cvxopt
import cvxopt.solvers
import pylab as pl


定义为一个线性he函数:

def linear_kernel(x1, x2):
    return np.dot(x1, x2)


生成示例数据:

def gen_non_lin_separable_data():
    mean1 = [-1, 2]
    mean2 = [1, -1]
    mean3 = [4, -4]
    mean4 = [-4, 4]
    cov = [[1.0, 0.8], [0.8, 1.0]]
    X1 = np.random.multivariate_normal(mean1, cov, 50)
    X1 = np.vstack((X1, np.random.multivariate_normal(mean3, cov, 50)))
    y1 = np.ones(len(X1))
    X2 = np.random.multivariate_normal(mean2, cov, 50)
    X2 = np.vstack((X2, np.random.multivariate_normal(mean4, cov, 50)))
    y2 = np.ones(len(X2)) * -1
    return X1, y1, X2, y2
    
X1, y1, X2, y2 = gen_non_lin_separable_data()


基于示例数据生成训练集和测试集:

def split_train(X1, y1, X2, y2):
    X1_train = X1[:90]
    y1_train = y1[:90]
    X2_train = X2[:90]
    y2_train = y2[:90]
    X_train = np.vstack((X1_train, X2_train))
    y_train = np.hstack((y1_train, y2_train))
    return X_train, y_train
def split_test(X1, y1, X2, y2):
    X1_test = X1[90:]
    y1_test = y1[90:]
    X2_test = X2[90:]
    y2_test = y2[90:]
    X_test = np.vstack((X1_test, X2_test))
    y_test = np.hstack((y1_test, y2_test))
    return X_test, y_test
X_train, y_train = split_train(X1, y1, X2, y2)
X_test, y_test = split_test(X1, y1, X2, y2)
print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)


基于cvxopt库定义线性支持向量机的训练过程:

def fit(X, y, C):
    n_samples, n_features = X.shape


    # Gram matrix
    K = np.zeros((n_samples, n_samples))
    for i in range(n_samples):
        for j in range(n_samples):
            K[i, j] = linear_kernel(X[i], X[j])


    P = cvxopt.matrix(np.outer(y, y) * K)
    q = cvxopt.matrix(np.ones(n_samples) * -1)
    A = cvxopt.matrix(y, (1, n_samples))
    b = cvxopt.matrix(0.0)


    if C is None:
        G = cvxopt.matrix(np.diag(np.ones(n_samples) * -1))
        h = cvxopt.matrix(np.zeros(n_samples))
    else:
        tmp1 = np.diag(np.ones(n_samples) * -1)
        tmp2 = np.identity(n_samples)
        G = cvxopt.matrix(np.vstack((tmp1, tmp2)))
        tmp1 = np.zeros(n_samples)
        tmp2 = np.ones(n_samples) * C
        h = cvxopt.matrix(np.hstack((tmp1, tmp2)))


    # solve QP problem
    solution = cvxopt.solvers.qp(P, q, G, h, A, b)


    # Lagrange multipliers
    a = np.ravel(solution['x'])
    # Support vectors have non zero lagrange multipliers
    sv = a > 1e-5
    ind = np.arange(len(a))[sv]
    a = a[sv]
    sv_x = X[sv]
    sv_y = y[sv]
    print("%d support vectors out of %d points" % (len(a), n_samples))


    # Intercept
    b = 0
    for n in range(len(a)):
        b += sv_y[n]
        b -= np.sum(a * sv_y * K[ind[n], sv])
    b /= len(a)


    # Weight vector
    w = np.zeros(n_features)
    for n in range(len(a)):
        w += a[n] * sv_y[n] * sv[n]
    else:
        w = None



软间隔支持向量机函数化封装

import numpy as np
from numpy import linalg
import cvxopt
import cvxopt.solvers
import pylab as pl


def linear_kernel(x1, x2):
    return np.dot(x1, x2)


class soft_margin_svm(object):


    def __init__(self, kernel=linear_kernel, C=None):
        self.kernel = kernel
        self.C = C
        if self.C is not None:
            self.C = float(self.C)


    def fit(self, X, y):
        n_samples, n_features = X.shape


        # Gram matrix
        K = np.zeros((n_samples, n_samples))
        for i in range(n_samples):
            for j in range(n_samples):
                K[i, j] = self.kernel(X[i], X[j])


        P = cvxopt.matrix(np.outer(y, y) * K)
        q = cvxopt.matrix(np.ones(n_samples) * -1)
        A = cvxopt.matrix(y, (1, n_samples))
        b = cvxopt.matrix(0.0)


        if self.C is None:
            G = cvxopt.matrix(np.diag(np.ones(n_samples) * -1))
            h = cvxopt.matrix(np.zeros(n_samples))
        else:
            tmp1 = np.diag(np.ones(n_samples) * -1)
            tmp2 = np.identity(n_samples)
            G = cvxopt.matrix(np.vstack((tmp1, tmp2)))
            tmp1 = np.zeros(n_samples)
            tmp2 = np.ones(n_samples) * self.C
            h = cvxopt.matrix(np.hstack((tmp1, tmp2)))


        # solve QP problem
        solution = cvxopt.solvers.qp(P, q, G, h, A, b)


        # Lagrange multipliers
        a = np.ravel(solution['x'])


        # Support vectors have non zero lagrange multipliers
        sv = a > 1e-5
        ind = np.arange(len(a))[sv]
        self.a = a[sv]
        self.sv = X[sv]
        self.sv_y = y[sv]
        print("%d support vectors out of %d points" % (len(self.a), n_samples))


        # Intercept
        self.b = 0
        for n in range(len(self.a)):
            self.b += self.sv_y[n]
            self.b -= np.sum(self.a * self.sv_y * K[ind[n], sv])
        self.b /= len(self.a)


        # Weight vector
        if self.kernel == linear_kernel:
            self.w = np.zeros(n_features)
            for n in range(len(self.a)):
                self.w += self.a[n] * self.sv_y[n] * self.sv[n]
        else:
            self.w = None


    def project(self, X):
        if self.w is not None:
            return np.dot(X, self.w) + self.b
        else:
            y_predict = np.zeros(len(X))
            for i in range(len(X)):
                s = 0
                for a, sv_y, sv in zip(self.a, self.sv_y, self.sv):
                    s += a * sv_y * self.kernel(X[i], sv)
                y_predict[i] = s
            return y_predict + self.b


    def predict(self, X):
        return np.sign(self.project(X))




if __name__ == "__main__":
    def gen_non_lin_separable_data():
        mean1 = [-1, 2]
        mean2 = [1, -1]
        mean3 = [4, -4]
        mean4 = [-4, 4]
        cov = [[1.0, 0.8], [0.8, 1.0]]
        X1 = np.random.multivariate_normal(mean1, cov, 50)
        X1 = np.vstack((X1, np.random.multivariate_normal(mean3, cov, 50)))
        y1 = np.ones(len(X1))
        X2 = np.random.multivariate_normal(mean2, cov, 50)
        X2 = np.vstack((X2, np.random.multivariate_normal(mean4, cov, 50)))
        y2 = np.ones(len(X2)) * -1
        return X1, y1, X2, y2




    def gen_lin_separable_overlap_data():
        # generate training data in the 2-d case
        mean1 = np.array([0, 2])
        mean2 = np.array([2, 0])
        cov = np.array([[1.5, 1.0], [1.0, 1.5]])
        X1 = np.random.multivariate_normal(mean1, cov, 100)
        y1 = np.ones(len(X1))
        X2 = np.random.multivariate_normal(mean2, cov, 100)
        y2 = np.ones(len(X2)) * -1
        return X1, y1, X2, y2




    def split_train(X1, y1, X2, y2):
        X1_train = X1[:90]
        y1_train = y1[:90]
        X2_train = X2[:90]
        y2_train = y2[:90]
        X_train = np.vstack((X1_train, X2_train))
        y_train = np.hstack((y1_train, y2_train))
        return X_train, y_train




    def split_test(X1, y1, X2, y2):
        X1_test = X1[90:]
        y1_test = y1[90:]
        X2_test = X2[90:]
        y2_test = y2[90:]
        X_test = np.vstack((X1_test, X2_test))
        y_test = np.hstack((y1_test, y2_test))
        return X_test, y_test




    def plot_margin(X1_train, X2_train, clf):
        def f(x, w, b, c=0):
            # given x, return y such that [x,y] in on the line
            # w.x + b = c
            return (-w[0] * x - b + c) / w[1]


        pl.plot(X1_train[:, 0], X1_train[:, 1], "ro")
        pl.plot(X2_train[:, 0], X2_train[:, 1], "bo")
        pl.scatter(clf.sv[:, 0], clf.sv[:, 1], s=100, c="g")


        # w.x + b = 0
        a0 = -4;
        a1 = f(a0, clf.w, clf.b)
        b0 = 4;
        b1 = f(b0, clf.w, clf.b)
        pl.plot([a0, b0], [a1, b1], "k")


        # w.x + b = 1
        a0 = -4;
        a1 = f(a0, clf.w, clf.b, 1)
        b0 = 4;
        b1 = f(b0, clf.w, clf.b, 1)
        pl.plot([a0, b0], [a1, b1], "k--")


        # w.x + b = -1
        a0 = -4;
        a1 = f(a0, clf.w, clf.b, -1)
        b0 = 4;
        b1 = f(b0, clf.w, clf.b, -1)
        pl.plot([a0, b0], [a1, b1], "k--")


        pl.axis("tight")
        pl.show()




    def plot_contour(X1_train, X2_train, clf):
        pl.plot(X1_train[:, 0], X1_train[:, 1], "ro")
        pl.plot(X2_train[:, 0], X2_train[:, 1], "bo")
        pl.scatter(clf.sv[:, 0], clf.sv[:, 1], s=100, c="g")


        X1, X2 = np.meshgrid(np.linspace(-6, 6, 50), np.linspace(-6, 6, 50))
        X = np.array([[x1, x2] for x1, x2 in zip(np.ravel(X1), np.ravel(X2))])
        Z = clf.project(X).reshape(X1.shape)
        pl.contour(X1, X2, Z, [0.0], colors='k', linewidths=1, origin='lower')
        pl.contour(X1, X2, Z + 1, [0.0], colors='grey', linewidths=1, origin='lower')
        pl.contour(X1, X2, Z - 1, [0.0], colors='grey', linewidths=1, origin='lower')


        pl.axis("tight")
        pl.show()


 
    def test_soft():
        X1, y1, X2, y2 = gen_lin_separable_overlap_data()
        X_train, y_train = split_train(X1, y1, X2, y2)
        X_test, y_test = split_test(X1, y1, X2, y2)


        clf = soft_margin_svm(C=1000.1)
        clf.fit(X_train, y_train)


        y_predict = clf.predict(X_test)
        correct = np.sum(y_predict == y_test)
        print("%d out of %d predictions correct" % (correct, len(y_predict)))


        plot_contour(X_train[y_train == 1], X_train[y_train == -1], clf)


    test_soft()

原文参考资料:

https://github.com/SmirkCao/Lihang/tree/master/CH07

http://cvxopt.org/examples/

https://mp.weixin.qq.com/s/qw3sFiWQLoPOKTU9bkJgyA

Tags:

本文暂时没有评论,来添加一个吧(●'◡'●)

欢迎 发表评论:

最近发表
标签列表