计算机系统应用教程网站

网站首页 > 技术文章 正文

机器学习之分类回归树(python实现CART)

btikc 2024-11-12 09:50:55 技术文章 3 ℃ 0 评论

机器学习之分类回归树(python实现CART)

之前有文章介绍过决策树(ID3)。简单回顾一下:ID3每次选取最佳特征来分割数据,这个最佳特征的判断原则是通过信息增益来实现的。按照某种特征切分数据后,该特征在以后切分数据集时就不再使用,因此存在切分过于迅速的问题。ID3算法还不能处理连续性特征。 下面简单介绍一下其他算法:

CART 分类回归树

CART是Classification And Regerssion Trees的缩写,既能处理分类任务也能做回归任务。

CART树的典型代表时二叉树,根据不同的条件将分类。

CART树构建算法 与ID3决策树的构建方法类似,直接给出CART树的构建过程。首先与ID3类似采用字典树的数据结构,包含以下4中元素:

  • 待切分的特征
  • 待切分的特征值
  • 右子树。当不再需要切分的时候,也可以是单个值
  • 左子树,类似右子树。

过程如下:

  1. 寻找最合适的分割特征
  2. 如果不能分割数据集,该数据集作为一个叶子节点。
  3. 对数据集进行二分割
  4. 对分割的数据集1重复1, 2,3 步,创建右子树。
  5. 对分割的数据集2重复1, 2,3 步,创建左子树。

明显的递归算法。

通过数据过滤的方式分割数据集,返回两个子集。

def splitDatas(rows, value, column):
 # 根据条件分离数据集(splitDatas by value, column)
 # return 2 part(list1, list2)
 list1 = []
 list2 = []
 if isinstance(value, int) or isinstance(value, float):
 for row in rows:
 if row[column] >= value:
 list1.append(row)
 else:
 list2.append(row)
 else:
 for row in rows:
 if row[column] == value:
 list1.append(row)
 else:
 list2.append(row)
 return list1, list2
复制代码

划分数据点

创建二进制决策树本质上就是递归划分输入空间的过程。

代码如下:

# gini()
def gini(rows):
 # 计算gini的值(Calculate GINI)
 length = len(rows)
 results = calculateDiffCount(rows)
 imp = 0.0
 for i in results:
 imp += results[i] / length * results[i] / length
 return 1 - imp
复制代码

构建树

def buildDecisionTree(rows, evaluationFunction=gini):
 # 递归建立决策树, 当gain=0,时停止回归
 # build decision tree bu recursive function
 # stop recursive function when gain = 0
 # return tree
 currentGain = evaluationFunction(rows)
 column_lenght = len(rows[0])
 rows_length = len(rows)
 best_gain = 0.0
 best_value = None
 best_set = None
 # choose the best gain
 for col in range(column_lenght - 1):
 col_value_set = set([x[col] for x in rows])
 for value in col_value_set:
 list1, list2 = splitDatas(rows, value, col)
 p = len(list1) / rows_length
 gain = currentGain - p * evaluationFunction(list1) - (1 - p) * evaluationFunction(list2)
 if gain > best_gain:
 best_gain = gain
 best_value = (col, value)
 best_set = (list1, list2)
 dcY = {'impurity': '%.3f' % currentGain, 'sample': '%d' % rows_length}
 #
 # stop or not stop
 if best_gain > 0:
 trueBranch = buildDecisionTree(best_set[0], evaluationFunction)
 falseBranch = buildDecisionTree(best_set[1], evaluationFunction)
 return Tree(col=best_value[0], value = best_value[1], trueBranch = trueBranch, falseBranch=falseBranch, summary=dcY)
 else:
 return Tree(results=calculateDiffCount(rows), summary=dcY, data=rows)
复制代码

上面代码的功能是先找到数据集切分的最佳位置和分割数据集。之后通过递归构建出上面图片的整棵树。

剪枝

在决策树的学习中,有时会造成决策树分支过多,这是就需要去掉一些分支,降低过度拟合。通过决策树的复杂度来避免过度拟合的过程称为剪枝。 后剪枝需要从训练集生成一棵完整的决策树,然后自底向上对非叶子节点进行考察。利用测试集判断是否将该节点对应的子树替换成叶节点。 代码如下:

def prune(tree, miniGain, evaluationFunction=gini):
 # 剪枝 when gain < mini Gain, 合并(merge the trueBranch and falseBranch)
 if tree.trueBranch.results == None:
 prune(tree.trueBranch, miniGain, evaluationFunction)
 if tree.falseBranch.results == None:
 prune(tree.falseBranch, miniGain, evaluationFunction)
 if tree.trueBranch.results != None and tree.falseBranch.results != None:
 len1 = len(tree.trueBranch.data)
 len2 = len(tree.falseBranch.data)
 len3 = len(tree.trueBranch.data + tree.falseBranch.data)
 p = float(len1) / (len1 + len2)
 gain = evaluationFunction(tree.trueBranch.data + tree.falseBranch.data) - p * evaluationFunction(tree.trueBranch.data) - (1 - p) * evaluationFunction(tree.falseBranch.data)
 if gain < miniGain:
 tree.data = tree.trueBranch.data + tree.falseBranch.data
 tree.results = calculateDiffCount(tree.data)
 tree.trueBranch = None
 tree.falseBranch = None
复制代码

当节点的gain小于给定的 mini Gain时则合并这两个节点.。

最后是构建树的代码:

if __name__ == '__main__':
 dataSet = loadCSV()
 decisionTree = buildDecisionTree(dataSet, evaluationFunction=gini)
 prune(decisionTree, 0.4)
 test_data = [5.9,3,4.2,1.5]
 r = classify(test_data, decisionTree)
 print(r)
复制代码

可以打印decisionTree可以构建出如如上的图片中的决策树。 后面找一组数据测试看能否得到正确的分类。

完整代码和数据集请查看:

github:CART

总结:

  • CART决策树
  • 分割数据集
  • 递归创建树

参考文章:

CART分类回归树分析与python实现

CART决策树(Decision Tree)的Python源码实现

Tags:

本文暂时没有评论,来添加一个吧(●'◡'●)

欢迎 发表评论:

最近发表
标签列表