网站首页 > 技术文章 正文
来源:TechWeb
近日,腾讯优图实验室在模型压缩任务中获得创新性突破,提出的基于滤波器骨架的逐条剪枝算法(Stripe-Wise Pruning,SWP),刷新了滤波器剪枝的SOTA效果。相关论文(Pruning Filter in Filter)已被机器学习领域的国际顶级会议Conference on Neural Information Processing Systems(NeurIPS 2020)收录。
Stripe-Wise Pruning与几种主流Pruning方式的区别
神经网络的具有结构和参数这两个属性,这两个属性都具有重要意义。本文指出神经网络的滤波器除了通常使用的参数属性以外,还有一种形状属性。形状属性之前一直隐含在参数中,通过训练每个滤波器的参数使其获得不同的形状。滤波器的形状属性具有重要的意义。具有合适形状的滤波器,即使参数是随机的,也能具有较好的性能。
因此本文通过一种名为滤波器骨架(Filter Skeleton,FS)的模块来显性地学习滤波器的形状(如图中①)。当训练结束,我们可以将FS乘回参数上,因此不会引入额外的参数(如图中②)。
PFF方法流程示意图
对于不在骨架上的参数,使用逐条裁剪的方法将其整条(stripe,1*1滤波器)裁剪掉。
具体的,首先通过卷积计算顺序的变换,可以将滤波器从Filter wise等价变换为stripe wise(如图中③)。接下来就可以使用正常的滤波器剪枝方法对其进行裁剪(如图中④)。
该方法的创新点包括:
(1) 提出滤波器除了参数属性外,还存在形状属性,并且形状属性具有重要意义。
(2) 提出滤波器骨架的模块来学习滤波器的形状,并可以指导模型剪枝。
(3) 通过变换普通卷积为Stripe-Wise Convolution,结构化的实现逐条剪枝后的模型。
逐条剪枝算法在CIFAR10和ImageNet数据集上达到了SOTA效果。
猜你喜欢
- 2024-11-13 五大基本算法 五大基本算法是什么
- 2024-11-13 高级程序员必备:分治算法分享 分冶算法
- 2024-11-13 最快速的寻路算法 Jump Point Search
- 2024-11-13 手机实时人工智能之「三维动作识别」:每帧只需9ms
- 2024-11-13 模型压缩 | 无需"精雕细琢","随机剪枝"足矣!(ICLR 2022)
- 2024-11-13 决策树算法的剪枝策略:优化模型的关键路径
- 2024-11-13 基于Python的决策树分类器与剪枝 利用python建立决策树模型
- 2024-11-13 离线强化学习的单次修剪 离线训练模型
- 2024-11-13 只要保留定位感知通道,目标检测模型也能剪枝70%参数
- 2024-11-13 用动态数据修剪加速深度学习 动态数据变化视频制作
你 发表评论:
欢迎- 11-13第一次养猫的人养什么品种比较合适?
- 11-13大学新生活不适应?送你舒心指南! 大学新生的不适应主要有哪些方面
- 11-13第一次倒班可能会让人感到有些不适应,以下是一些建议
- 11-13货物大小不同装柜算法有哪些?怎么算?区别有哪些?
- 11-13五大基本算法 五大基本算法是什么
- 11-13高级程序员必备:分治算法分享 分冶算法
- 11-13最快速的寻路算法 Jump Point Search
- 11-13手机实时人工智能之「三维动作识别」:每帧只需9ms
- 最近发表
- 标签列表
-
- oraclesql优化 (66)
- 类的加载机制 (75)
- feignclient (62)
- 一致性hash算法 (71)
- dockfile (66)
- 锁机制 (57)
- javaresponse (60)
- 查看hive版本 (59)
- phpworkerman (57)
- spark算子 (58)
- vue双向绑定的原理 (68)
- springbootget请求 (58)
- docker网络三种模式 (67)
- spring控制反转 (71)
- data:image/jpeg (69)
- base64 (69)
- java分页 (64)
- kibanadocker (60)
- qabstracttablemodel (62)
- java生成pdf文件 (69)
- deletelater (62)
- com.aspose.words (58)
- android.mk (62)
- qopengl (73)
- epoch_millis (61)
本文暂时没有评论,来添加一个吧(●'◡'●)