计算机系统应用教程网站

网站首页 > 技术文章 正文

霍夫变换-Hough检测

btikc 2024-12-10 12:31:38 技术文章 28 ℃ 0 评论

霍夫变换(Hough变换),是一种快速检测图像不连续点边界形状的方法,是图像检测中非常普遍和实用的检测技术。

原理大致如下:

opencv 中已经集成了hough变换的具体应用,我们先来感受一下:

我们给定一张含有直线和圆的图像,看看霍夫变换会是什么样的效果。具体霍夫变换方法如下:

def simple_hough(cv2_img, dLine=True):
    zero_img = np.zeros((cv2_img.shape[0], cv2_img.shape[1],3), np.uint8)
    gray = cv2.cvtColor(cv2_img, cv2.COLOR_BGR2GRAY)
    edges = cv2.Canny(gray, 50, 150, apertureSize = 3)
    
    ###### 直线检测
    minLineLength,maxLineGap = 300, 2000 
    hough_outs = cv2.HoughLinesP(edges,1 , np.pi/180, 100, minLineLength= minLineLength, ### 直线检测
                            maxLineGap= maxLineGap)
    zero_img1 = zero_img.copy()
    for line in hough_outs:
        x1,y1,x2,y2 = line[0]
        cv2.line(zero_img1,(x1,y1),(x2,y2),(0,255,255), 4)
    
    #### 圆检测
    zero_img2 = zero_img.copy()
    hough_outs = cv2.HoughCircles(edges, cv2.HOUGH_GRADIENT,1, 100, param1=50, param2=30, 
                                  minRadius=20, maxRadius=0) ### 检测圆
    for i in hough_outs[0,:]:
        cx = int(i[0])
        cy = int(i[1])
        r = int(i[2])
        cv2.circle(zero_img2,(cx, cy), r, (0,255,255), 8 )
    
    return zero_img1, zero_img2

ori_img = cv2.imread("img/line.png")
m1, m2 = simple_hough(ori_img)
plt.figure(figsize=(20, 12))
plt.subplot(1,3,1), plt.imshow(ori_img[:,:,::-1]), plt.title('原始图像'), plt.axis('off')
plt.subplot(1,3,2), plt.imshow(m1[:,:,::-1]), plt.title('直线检测-霍夫变化'), plt.axis('off')
plt.subplot(1,3,3), plt.imshow(m2[:,:,::-1]), plt.title('圆形检测-霍夫变化'), plt.axis('off')

霍夫变换检测效果:





图1为原始图片,图1中有直线和圆形,图2和图3图片分别是霍夫直线检测和圆形检测的结果。你是不是已经被霍夫变换效果惊艳到呢?


霍夫变换应用

  1. 图像偏转角度测定:

比如下面的这一张发生了偏转的图像,我们可以借助以霍夫变换测定图片被旋转的角度,然后进行纠正。(当然还用最小外接矩的方法实现。)

方法如下:

#### 图像偏转角度测定
ori_img = cv2.imread('img/news1.png')
zero_img = np.zeros((ori_img.shape[0], ori_img.shape[1],3), np.uint8)
gray = cv2.cvtColor(ori_img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 50, 100, apertureSize = 3)
lines = cv2.HoughLines(edges,1 , np.pi/180, 200, 0, 0)
h, w = ori_img.shape[:2]

for line in lines[0]:
    rho, theta = line
    a = np.cos(theta)
    b = np.sin(theta)
    x0 = a*rho
    y0 = b*rho
    x1 = int(x0 + 1000*(-b))
    y1 = int(y0 + 1000*(a))
    x2 = int(x0 - 1000*(-b))
    y2 = int(y0 - 1000*(a))
    
    t = float(y2-y1)/(x2-x1) ### 斜率
    rotate_angle = math.degrees(math.atan(t)) ### 角度计算
    rotate_angle = np.ceil(rotate_angle)

霍夫变直线测结果

通过计算,我们发现图片被旋转了6度。既然我知道了图像发生偏转的角度,是不是可以通过逆向旋转来实现图像纠偏呢?答案是可以的。

我们可以通过放射变换实现图像的旋转:

center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, rotate_angle, 1.0) # 传入中心和角度,得到旋转矩形
rotated_img = cv2.warpAffine(ori_img, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE) # 最后要换成原图

纠偏后的图像:


另外,霍夫变换还有很多其他的应用,后面有机会再给大家详细分享。

本文暂时没有评论,来添加一个吧(●'◡'●)

欢迎 发表评论:

最近发表
标签列表