网站首页 > 技术文章 正文
一、准备深度学习环境
本人的笔记本电脑系统是:Windows10
YOLO系列最新版本的YOLOv8已经发布了,详细介绍可以参考我前面写的博客,目前ultralytics已经发布了部分代码以及说明,可以在github上下载YOLOv8代码,代码文件夹中会有requirements.txt文件,里面描述了所需要的安装包。
本文最终安装的pytorch版本是1.8.1,torchvision版本是0.9.1,python是3.7.10,其他的依赖库按照requirements.txt文件安装即可。
然后还需要安装ultralytics,目前YOLOv8核心代码都封装在这个依赖包里面,可通过以下命令安装
pip install ultralytics
二、 准备自己的数据集
本人在训练YOLOv8时,选择的数据格式是VOC,因此下面将介绍如何将自己的数据集转换成可以直接让YOLOv8进行使用。
1、创建数据集
我的数据集都在保存在mydata文件夹(名字可以自定义),目录结构如下,将之前labelImg标注好的xml文件和图片放到对应目录下
mydata
…images # 存放图片
…xml # 存放图片对应的xml文件
…dataSet #之后会在Main文件夹内自动生成train.txt,val.txt,test.txt和trainval.txt四个文件,存放训练集、验证集、测试集图片的名字(无后缀.jpg)
示例如下:
mydata文件夹下内容如下:
image为VOC数据集格式中的JPEGImages,内容如下:
xml文件夹下面为.xml文件(标注工具采用labelImage),内容如下:
dataSet 文件夹下面存放训练集、验证集、测试集的划分,通过脚本生成,可以创建一个split_train_val.py文件,代码内容如下:
运行代码后,在dataSet 文件夹下生成下面四个txt文档:
三个txt文件里面的内容如下:
2、转换数据格式
接下来准备labels,把数据集格式转换成yolo_txt格式,即将每个xml标注提取bbox信息为txt格式,每个图像对应一个txt文件,文件每一行为一个目标的信息,包括class, x_center, y_center, width, height格式。格式如下:
创建voc_label.py文件,将训练集、验证集、测试集生成label标签(训练中要用到),同时将数据集路径导入txt文件中,代码内容如下:
3、配置文件
1)数据集的配置
在mydata文件夹下新建一个mydata.yaml文件(可以自定义命名),用来存放训练集和验证集的划分文件(train.txt和val.txt),这两个文件是通过运行voc_label.py代码生成的,然后是目标的类别数目和具体类别列表,mydata.yaml内容如下:
2) 选择一个你需要的模型
在ultralytics/models/v8/目录下是模型的配置文件,这边提供s、m、l、x版本,逐渐增大(随着架构的增大,训练时间也是逐渐增大),假设采用yolov8x.yaml,只用修改一个参数,把nc改成自己的类别数,需要取整(可选) 如下:
至此,自定义数据集已创建完毕,接下来就是训练模型了。
三、模型训练
1、下载预训练模型
在YOLOv8的GitHub开源网址上下载对应版本的模型
https://github.com/ultralytics/assets/releases
2、训练
接下来就可以开始训练模型了,命令如下:
yolo task=detect mode=train model=yolov8x.yaml data=mydata.yaml epochs=1000 batch=16
以上参数解释如下:
task:选择任务类型,可选['detect', 'segment', 'classify', 'init']
mode: 选择是训练、验证还是预测的任务蕾西 可选['train', 'val', 'predict']
model: 选择yolov8不同的模型配置文件,可选yolov8s.yaml、yolov8m.yaml、yolov8l.yaml、yolov8x.yam
data: 选择生成的数据集配置文件
epochs:指的就是训练过程中整个数据集将被迭代多少次,显卡不行你就调小点。
batch:一次看完多少张图片才进行权重更新,梯度下降的mini-batch,显卡不行你就调小点。
训练过程如下所示
猜你喜欢
- 2024-12-16 人工智能应用的模型训练和评估 人工智能模型的主要技术指标
- 2024-12-16 二年级数学计算专项练习题,检测孩子计算能力
- 2024-12-16 DBnet检测加分类,提取身份证要素
- 2024-12-16 [图像处理] 基于CleanVision库清洗图像数据集
- 2024-12-16 python机器学习:如何储存训练好的模型并重新调用
- 2024-12-16 灵智互动|训练数据你不得不知道的问题
- 2024-12-16 机器学习基础:超参数和验证集 超参数是指
- 2024-12-16 中安表单识别AI训练平台的识别准确率是否可以通过测试来验证?
- 2024-12-16 天池伪造图像的篡改检测比赛TOP2/3方案分享
- 2024-12-16 【AI 和机器学习】PyTorch BASIC 基础知识(节2):数据集数据加载器
你 发表评论:
欢迎- 最近发表
- 标签列表
-
- oraclesql优化 (66)
- 类的加载机制 (75)
- feignclient (62)
- 一致性hash算法 (71)
- dockfile (66)
- 锁机制 (57)
- javaresponse (60)
- 查看hive版本 (59)
- phpworkerman (57)
- spark算子 (58)
- vue双向绑定的原理 (68)
- springbootget请求 (58)
- docker网络三种模式 (67)
- spring控制反转 (71)
- data:image/jpeg (69)
- base64 (69)
- java分页 (64)
- kibanadocker (60)
- qabstracttablemodel (62)
- java生成pdf文件 (69)
- deletelater (62)
- com.aspose.words (58)
- android.mk (62)
- qopengl (73)
- epoch_millis (61)
本文暂时没有评论,来添加一个吧(●'◡'●)