计算机系统应用教程网站

网站首页 > 技术文章 正文

几种典型的图像去噪算法总结 图像去噪模型

btikc 2024-12-26 11:57:11 技术文章 44 ℃ 0 评论

(一)高斯低通滤波去噪

高斯低通滤波器(Gaussian Low Pass Filter)是一类传递函数为高斯函数的线性平滑滤波器。又由于高斯函数是正态分布的密度函数。因此高斯低通滤波器对于去除服从正态分布(Normal distribution)的噪声非常有效。一维高斯函数和二维高斯函数 (高斯低通滤波器的传递函数) 的表达形式分别如下:


图1:不同标准差时的高斯曲线


从上图可以看出,高斯函数的标准差越大,高斯曲线越平滑。去噪能力越强,图像越模糊。

下图2用均值为0方差分别为0.1,0.5,1.0的高斯噪声对原图像进行污染的结果。


高斯滤波的实现方式有时域方式和频域方式两种,一种是时域高斯低通滤波,一种是频域高斯低通滤波。下面首先看看时域高斯低通滤波的结果。时域高斯低通滤波的实质是定义一个奇数大小的模板(3 X 3 ;5 X 5 ;7 X 7 ……),然后让该模板遍历整副图像,模板中的加权平均值就是模板中心的值。时域高斯低通滤波的结果如下图所示:


图3:不同的标准差和领域大小时的去噪后的图像

从上图可以看出,当领域窗口固定时,标准差越大,去除高斯噪声能力越强,图像越模糊,当标准差为2以上时,去噪能力几乎不再增加,只有当增加领域的大小时,去噪能力才会进一步增强。下面我们可以看一下,标准差分别为10和30的高斯曲线来进一步说明在邻域窗口大小一致的情况下,标准差越大,高斯曲线越宽,那么去高频噪声的能力就越强。但是他不是无限增强的,最终会趋于一个稳定值,只有当继续增大邻域窗口时,去噪能力才会进一步增强。


图4:不同标准差时的高斯曲线

上述时域高斯低通滤波的matlab源代码如下:

下面实现频域高斯低通滤波器

由于时域滤波的本质就是采用原始图像与滤波核(领域窗口)进行卷积的操作,我们知道卷积的运算速度是比较慢的,由傅里叶变换的性质可知,时域卷积可以转化为频域的乘积。因而频域高斯低通滤波应运而生。该部分内容基本源于冈萨雷斯版数字图像处理中第四章的内容,为了避免抄书,这里仅给出与时域滤波有相似结果的频域滤波的matlab源代码。

为了防止傅里叶变换时由于周期性而导致的相邻周期之间的干扰,需要对输入图像进行0填充,对应于时域滤波中的imfilter函数中的“symmetric”选项。频域中采用paddedsize函数来实现。频域高斯低通滤波的matlab代码如下:

仿真结果如下:


高斯低通滤波虽然较为简单,个人觉得将它说的非常明白,还是有些困难,这与自己的表达能力差有很大的关系,以后要养成些博客的习惯,希望能够尽早提高。我还是习惯用时域滤波的方法,频域滤波可以将时域的卷积运算转化为频域乘积运算,然而时域转化为频域过程中的傅里叶计算同样耗费时间。时域运算是领域操作,而频域计算式整体操作,关于时域和频域孰优孰劣还有待进一步考究。

高斯低通滤波应该是最基本的去噪手段,后面将进一步阐述双边滤波去噪、非局部均值去噪,以及核回归用于图像去噪。

Tags:

本文暂时没有评论,来添加一个吧(●'◡'●)

欢迎 发表评论:

最近发表
标签列表