小喵的唠叨话:这次的博客,真心累伤了小喵的心。但考虑到知识需要巩固和分享,小喵决定这次把剩下的内容都写完。
四、数据的重整,简单的划分
前面的Data层用于生成成对的输入数据,Normalization层,用于将feature归一化,那么之后是不是就可以使用ContrastiveLoss层进行训练了呢?
且慢,还差一步。
ContrastiveLoss层要求有3个bottom:feature1、feature2以及表示对位的feature是否为同一个identity的label。
我们现在得到的feature却是所有的都在一起,data层直接得到的label也和这里要求的label不同。因此务必要对数据进行一次重整。
一个简单的规则就是按照奇偶,将feature划分成两部分。这样得到的两部分正好就是相同位置为一对。对于label的重整,也可以用类似的方法。小喵这里只对feature进行重整,而label的处理则是通过改ContrastiveLoss层来实现。
feature的重整本质上就是一个切片的操作,这里命名为id2_slice_layer,实现方法就是按照奇偶把bottom的数据复制到top。后馈的时候,也就是将两部分的feature的diff都直接复制到对应位置的bottom_diff中,具体实现如下:
1 // created by miao 2 #ifndef CAFFE_ID2_SLICE_LAYER_HPP_ 3 #define CAFFE_ID2_SLICE_LAYER_HPP_ 4 5 #include <vector> 6 7 #include "caffe/blob.hpp" 8 #include "caffe/layer.hpp" 9 #include "caffe/proto/caffe.pb.h" 10 11 namespace caffe { 12 13 /** 14 * @brief Takes a Blob and slices it along either the num or channel dimension, 15 * outputting multiple sliced Blob results. 16 * 17 * TODO(dox): thorough documentation for Forward, Backward, and proto params. 18 */ 19 template <typename Dtype> 20 class Id2SliceLayer : public Layer<Dtype> { 21 public: 22 explicit Id2SliceLayer(const LayerParameter& param) 23 : Layer<Dtype>(param) {} 24 virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom, 25 const vector<Blob<Dtype>*>& top); 26 virtual void Reshape(const vector<Blob<Dtype>*>& bottom, 27 const vector<Blob<Dtype>*>& top); 28 29 virtual inline const char* type const { return "Id2Slice"; } 30 virtual inline int ExactNumBottomBlobs const { return 1; } 31 virtual inline int MinTopBlobs const { return 1; } 32 33 protected: 34 virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom, 35 const vector<Blob<Dtype>*>& top); 36 virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom, 37 const vector<Blob<Dtype>*>& top); 38 virtual void Backward_cpu(const vector<Blob<Dtype>*>& top, 39 const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom); 40 virtual void Backward_gpu(const vector<Blob<Dtype>*>& top, 41 const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom); 42 }; 43 44 } // namespace caffe 45 46 #endif // CAFFE_ID2_SLICE_LAYER_HPP_
头文件,巨简单。。。
Cpp的代码,也非常简单,要注意id2_slice层的top有两个,每个的形状都是bottom的一半。
1 // created by miao 2 #include <algorithm> 3 #include <vector> 4 5 #include "caffe/layers/id2_slice_layer.hpp" 6 #include "caffe/util/math_functions.hpp" 7 8 namespace caffe { 9 10 template <typename Dtype> 11 void Id2SliceLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom, 12 const vector<Blob<Dtype>*>& top) { 13 } 14 15 template <typename Dtype> 16 void Id2SliceLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom, 17 const vector<Blob<Dtype>*>& top) { 18 vector<int> top_shape = bottom[0]->shape; 19 top_shape[0] /= 2; 20 top[0]->Reshape(top_shape); 21 top[1]->Reshape(top_shape); 22 } 23 24 template <typename Dtype> 25 void Id2SliceLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, 26 const vector<Blob<Dtype>*>& top) { 27 const int feature_size = bottom[0]->count(1); 28 for (int n = 0; n < bottom[0]->num; ++ n) { 29 caffe_copy( 30 feature_size, 31 bottom[0]->cpu_data + n * feature_size, 32 top[n & 1]->mutable_cpu_data + (n / 2) * feature_size 33 ); 34 } 35 } 36 37 template <typename Dtype> 38 void Id2SliceLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top, 39 const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { 40 const int feature_size = bottom[0]->count(1); 41 for (int n = 0; n < bottom[0]->num; ++ n) { 42 caffe_copy( 43 feature_size, 44 top[n & 1]->cpu_diff + (n / 2) * feature_size, 45 bottom[0]->mutable_cpu_diff + n * feature_size 46 ); 47 } 48 } 49 50 #ifdef CPU_ONLY 51 STUB_GPU(Id2SliceLayer); 52 #endif 53 54 INSTANTIATE_CLASS(Id2SliceLayer); 55 REGISTER_LAYER_CLASS(Id2Slice); 56 57 } // namespace caffe
GPU上的实现,为了简单起见,也是直接调用了CPU的前馈函数。
1 // created by miao 2 #include <vector> 3 4 #include "caffe/layers/id2_slice_layer.hpp" 5 #include "caffe/util/math_functions.hpp" 6 7 namespace caffe { 8 template <typename Dtype> 9 void Id2SliceLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom, 10 const vector<Blob<Dtype>*>& top) { 11 this->Forward_cpu(bottom, top); 12 } 13 14 template <typename Dtype> 15 void Id2SliceLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top, 16 const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { 17 this->Backward_cpu(top, propagate_down, bottom); 18 } 19 20 INSTANTIATE_LAYER_GPU_FUNCS(Id2SliceLayer); 21 22 } // namespace caffe
这样就完成了feature的重整。由于没有用到新的参数,因此也不需要修改caffe.proto。
亲可以仿照这个方法对label来做类似的操作。鉴于小喵比较懒。。。这里就只是简单的改ContrastiveLoss层的代码了。
第一步,在ContrastiveLossLayer中新增一个用于记录feature pair是否是同一个identity的成员变量,取代原本的第三个bottom的功能。这样只需要在前馈的时候提前算好,就可以代替之前的第三个bottom来使用,而不需要再修改别的地方的代码。
为了大家使用的方便,小喵直接把修改之后的头文件粘贴出来(删掉注释)。新增的行,用“added by miao”这个注释标注出来。头文件只加了一行。
1 #ifndef CAFFE_CONTRASTIVE_LOSS_LAYER_HPP_ 2 #define CAFFE_CONTRASTIVE_LOSS_LAYER_HPP_ 3 4 #include <vector> 5 6 #include "caffe/blob.hpp" 7 #include "caffe/layer.hpp" 8 #include "caffe/proto/caffe.pb.h" 9 10 #include "caffe/layers/loss_layer.hpp" 11 12 namespace caffe { 13 template <typename Dtype> 14 class ContrastiveLossLayer : public LossLayer<Dtype> { 15 public: 16 explicit ContrastiveLossLayer(const LayerParameter& param) 17 : LossLayer<Dtype>(param), diff_ {} 18 virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom, 19 const vector<Blob<Dtype>*>& top); 20 21 virtual inline int ExactNumBottomBlobs const { return 3; } 22 virtual inline const char* type const { return "ContrastiveLoss"; } 23 virtual inline bool AllowForceBackward(const int bottom_index) const { 24 return bottom_index != 2; 25 } 26 protected: 27 /// @copydoc ContrastiveLossLayer 28 virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom, 29 const vector<Blob<Dtype>*>& top); 30 virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom, 31 const vector<Blob<Dtype>*>& top); 32 virtual void Backward_cpu(const vector<Blob<Dtype>*>& top, 33 const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom); 34 virtual void Backward_gpu(const vector<Blob<Dtype>*>& top, 35 const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom); 36 37 Blob<Dtype> diff_; // cached for backward pass 38 Blob<Dtype> dist_sq_; // cached for backward pass 39 Blob<Dtype> diff_sq_; // tmp storage for gpu forward pass 40 Blob<Dtype> summer_vec_; // tmp storage for gpu forward pass 41 Blob<Dtype> is_same_; // added by miao 42 }; 43 } // namespace caffe 44 45 #endif // CAFFE_CONTRASTIVE_LOSS_LAYER_HPP_
源文件的修改也十分简单,这里只贴出来Cuda的部分。源文件,修改了与原来的bottom3相关的地方。
1 #include <algorithm> 2 #include <vector> 3 #include <iostream> 4 #include "caffe/layers/contrastive_loss_layer.hpp" 5 #include "caffe/util/math_functions.hpp" 6 7 namespace caffe { 8 9 template <typename Dtype> 10 void ContrastiveLossLayer<Dtype>::Forward_gpu( 11 const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { 12 const int count = bottom[0]->count; 13 caffe_gpu_sub( 14 count, 15 bottom[0]->gpu_data, // a 16 bottom[1]->gpu_data, // b 17 diff_.mutable_gpu_data); // a_i-b_i 18 caffe_gpu_powx( 19 count, 20 diff_.mutable_gpu_data, // a_i-b_i 21 Dtype(2), 22 diff_sq_.mutable_gpu_data); // (a_i-b_i)^2 23 caffe_gpu_gemv( 24 CblasNoTrans, 25 bottom[0]->num, 26 bottom[0]->channels, 27 Dtype(1.0), 28 diff_sq_.gpu_data, // (a_i-b_i)^2 29 summer_vec_.gpu_data, 30 Dtype(0.0), 31 dist_sq_.mutable_gpu_data); // \Sum (a_i-b_i)^2 32 Dtype margin = this->layer_param_.contrastive_loss_param.margin; 33 bool legacy_version = 34 this->layer_param_.contrastive_loss_param.legacy_version; 35 Dtype loss(0.0); 36 for (int i = 0; i < bottom[0]->num; ++i) { 37 // added by miao 38 is_same_.mutable_cpu_data[i] = (bottom[2]->cpu_data[2 * i] == bottom[2]->cpu_data[2 * i + 1])? 1:0; 39 if (is_same_.cpu_data[i] == 1) { // similar pairs 40 loss += dist_sq_.cpu_data[i]; 41 } else { // dissimilar pairs 42 if (legacy_version) { 43 loss += std::max(margin - dist_sq_.cpu_data[i], Dtype(0.0)); 44 } else { 45 Dtype dist = std::max(margin - sqrt(dist_sq_.cpu_data[i]), 46 Dtype(0.0)); 47 loss += dist*dist; 48 } 49 } 50 } 51 loss = loss / static_cast<Dtype>(bottom[0]->num) / Dtype(2); 52 top[0]->mutable_cpu_data[0] = loss; 53 } 54 55 template <typename Dtype> 56 __global__ void CLLBackward(const int count, const int channels, 57 const Dtype margin, const bool legacy_version, const Dtype alpha, 58 const Dtype* y, const Dtype* diff, const Dtype* dist_sq, 59 Dtype *bottom_diff) { 60 CUDA_KERNEL_LOOP(i, count) { 61 int n = i / channels; // the num index, to access y and dist_sq 62 if (static_cast<int>(y[n])) { // similar pairs 63 bottom_diff[i] = alpha * diff[i]; 64 } else { // dissimilar pairs 65 Dtype mdist(0.0); 66 Dtype beta(0.0); 67 if (legacy_version) { 68 mdist = (margin - dist_sq[n]); 69 beta = -alpha; 70 } else { 71 Dtype dist = sqrt(dist_sq[n]); 72 mdist = (margin - dist); 73 beta = -alpha * mdist / (dist + Dtype(1e-4)) * diff[i]; 74 } 75 if (mdist > 0.0) { 76 bottom_diff[i] = beta; 77 } else { 78 bottom_diff[i] = 0; 79 } 80 } 81 } 82 } 83 84 template <typename Dtype> 85 void ContrastiveLossLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top, 86 const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { 87 for (int i = 0; i < 2; ++i) { 88 if (propagate_down[i]) { 89 const int count = bottom[0]->count; 90 const int channels = bottom[0]->channels; 91 Dtype margin = this->layer_param_.contrastive_loss_param.margin; 92 const bool legacy_version = 93 this->layer_param_.contrastive_loss_param.legacy_version; 94 const Dtype sign = (i == 0) ? 1 : -1; 95 const Dtype alpha = sign * top[0]->cpu_diff[0] / 96 static_cast<Dtype>(bottom[0]->num); 97 // NOLINT_NEXT_LINE(whitespace/operators) 98 CLLBackward<Dtype><<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS>>>( 99 count, channels, margin, legacy_version, alpha, 100 is_same_.gpu_data, // pair similarity 0 or 1 added by miao 101 diff_.gpu_data, // the cached eltwise difference between a and b 102 dist_sq_.gpu_data, // the cached square distance between a and b 103 bottom[i]->mutable_gpu_diff); 104 CUDA_POST_KERNEL_CHECK; 105 } 106 } 107 } 108 109 INSTANTIATE_LAYER_GPU_FUNCS(ContrastiveLossLayer); 110 111 } // namespace caffe
需要注意的时候,前馈和后馈都需要做一点代码上的修改,虽说十分的简单,但也要小心。
至此,基于Caffe的DeepID2的修改全部完成。
最后再给出一个基于AlexNet得到的一个train.prototxt。(具体能不能训练,小喵不能保证,这里只是示意一下各个层如何使用)其中fc7是特征层,fc8是分类的结果。这里一共使用了两个loss。
name: "AlexNet" layer { name: "data" type: "Python" top: "data" top: "label" include { phase: TRAIN } python_param { module: "id2_data_layer" layer: "ld2_data_layer" param_str: "{'crop_size' : 128, 'batch_size' : 96, 'mean_file': '/path/to/mean_file', 'scale': 0.0078125, 'source': '/path/to/train_list', 'image_root_dir': '/path/to/image_root_dir'}" } } layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 96 kernel_size: 11 stride: 4 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "relu1" type: "ReLU" bottom: "conv1" top: "conv1" } layer { name: "norm1" type: "LRN" bottom: "conv1" top: "norm1" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } } layer { name: "pool1" type: "Pooling" bottom: "norm1" top: "pool1" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "conv2" type: "Convolution" bottom: "pool1" top: "conv2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 2 kernel_size: 5 group: 2 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu2" type: "ReLU" bottom: "conv2" top: "conv2" } layer { name: "norm2" type: "LRN" bottom: "conv2" top: "norm2" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } } layer { name: "pool2" type: "Pooling" bottom: "norm2" top: "pool2" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "conv3" type: "Convolution" bottom: "pool2" top: "conv3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 384 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "relu3" type: "ReLU" bottom: "conv3" top: "conv3" } layer { name: "conv4" type: "Convolution" bottom: "conv3" top: "conv4" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 384 pad: 1 kernel_size: 3 group: 2 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu4" type: "ReLU" bottom: "conv4" top: "conv4" } layer { name: "conv5" type: "Convolution" bottom: "conv4" top: "conv5" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 group: 2 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu5" type: "ReLU" bottom: "conv5" top: "conv5" } layer { name: "pool5" type: "Pooling" bottom: "conv5" top: "pool5" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "fc6" type: "InnerProduct" bottom: "pool5" top: "fc6" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 4096 weight_filler { type: "gaussian" std: 0.005 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu6" type: "ReLU" bottom: "fc6" top: "fc6" } layer { name: "drop6" type: "Dropout" bottom: "fc6" top: "fc6" dropout_param { dropout_ratio: 0.5 } } layer { name: "fc7" type: "InnerProduct" bottom: "fc6" top: "fc7" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 4096 weight_filler { type: "gaussian" std: 0.005 } bias_filler { type: "constant" value: 0.1 } } } layer { name: "relu7" type: "ReLU" bottom: "fc7" top: "fc7" } layer { name: "drop7" type: "Dropout" bottom: "fc7" top: "fc7" dropout_param { dropout_ratio: 0.5 } } layer { name: "fc8" type: "InnerProduct" bottom: "fc7" top: "fc8" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 10000 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "loss" type: "SoftmaxWithLoss" bottom: "fc8" bottom: "label" top: "loss" } layer { name: "norm_fea" type: "Normalization" bottom: "fc7" top: "norm_fea" } layer { name: "fea_slice" type: "Id2Slice" bottom: "norm_fea" top: "feature1" top: "feature2" } layer { name: "id2_loss" type: "ContrastiveLoss" bottom: "feature1" bottom: "feature2" bottom: "label" top: "id2_loss" contrastive_loss_param { margin: 1.0 } }
alextnet.prototxt
转载请注明出处~
本文暂时没有评论,来添加一个吧(●'◡'●)