计算机系统应用教程网站

网站首页 > 技术文章 正文

字节二面,让写一个LFU缓存策略算法,懵了

btikc 2024-09-08 12:06:33 技术文章 10 ℃ 0 评论

前言

LRU全称:Least Recently Used:最近最少使用策略,判断最近被使用的时间,距离目前最远的数据优先被淘汰,作为一种根据访问时间来更改链表顺序从而实现缓存淘汰的算法,它是redis采用的淘汰算法之一。

redis还有一个缓存策略叫做LFU, 那么LFU是什么呢?我们本期来分享一下LFU:

一:LRU是什么

LFU,全称是:Least Frequently Used,最不经常使用策略,在一段时间内,数据被使用频次最少的,优先被淘汰。

最少使用(LFU)是一种用于管理计算机内存的缓存算法。

主要是记录和追踪内存块的使用次数,当缓存已满并且需要更多空间时,系统将以最低内存块使用频率清除内存.采用LFU算法的最简单方法是为每个加载到缓存的块分配一个计数器。

每次引用该块时,计数器将增加一。当缓存达到容量并有一个新的内存块等待插入时,系统将搜索计数器最低的块并将其从缓存中删除(本段摘自维基百科)

解释:上面这个图就是一个LRU的简单实现思路,在链表的开始插入元素,然后每插入一次计数一次,接着按照次数重新排序链表,如果次数相同的话,按照插入时间排序,然后从链表尾部选择淘汰的数据~

二:LRU实现

2.1 定义Node节点

Node主要包含了key和value,因为LFU的主要实现思想是比较访问的次数,如果在次数相同的情况下需要比较节点的时间,越早放入得越快被淘汰,因此我们需要在Node节点上加入time和count的属性,分别用来记录节点的访问的时间和访问次数。

其他的版本实现方式里有新加个内部类来记录 key的count和time,但是我觉得不够方便,还得单独维护一个map,成本有点大。

还有一点注意的是这里实现了comparable接口,覆写了compare方法,这里 的主要作用就是在排序的时候需要用到,在compare方法里面我们首先比较节点的访问次数,在访问次数相同的情况下比较节点的访问时间,这里是为了 在排序方法里面通过比较key来选择淘汰的key

 /**
     * 节点
     */
    public static class Node implements Comparable<Node>{
            //键
            Object key;
            //值
            Object value;
            /**
             * 访问时间
             */
            long time;

            /**
             * 访问次数
             */
            int count;

            public Node(Object key, Object value, long time, int count) {
                this.key = key;
                this.value = value;
                this.time = time;
                this.count = count;
            }

            public Object getKey() {
                return key;
            }

            public void setKey(Object key) {
                this.key = key;
            }

            public Object getValue() {
                return value;
            }

            public void setValue(Object value) {
                this.value = value;
            }

            public long getTime() {
                return time;
            }

            public void setTime(long time) {
                this.time = time;
            }

            public int getCount() {
                return count;
            }

            public void setCount(int count) {
                this.count = count;
            }

            @Override
            public int compareTo(Node o) {
                int compare = Integer.compare(this.count, o.count);
                //在数目相同的情况下 比较时间
                if (compare==0){
                    return Long.compare(this.time,o.time);
                }
                return compare;
            }
        }

2.2:定义LFU类

定义LFU类,这里采用了泛型,声明了K和V,还有总容量和一个Map(caches)用来维护所有的节点。

在构造方法里将size传递进去,并且创建了一个LinkedHashMap,采用linkedHashMap的主要原因是维护key的顺序

public class LFU<K,V> {

        /**
         *  总容量
         */
        private int capacity;

        /**
         * 所有的node节点
         */
        private Map<K, Node> caches;
        /**
         * 构造方法
         * @param size
        */
        public LFU(int size) {
           this.capacity = size;
           caches = new LinkedHashMap<K,Node>(size);
        }
}

2.3: 添加元素

添加元素的逻辑主要是先从缓存中根据key获取节点,如果获取不到,证明是新添加的元素,然后和容量比较,大于预定容量的话,需要找出count计数最小(计数相同的情况下,选择时间最久)的节点,然后移除掉那个。

如果在预定的大小之内,就重新创建节点,注意这里不能使用 System.currentTimeMillis()方法,因为毫秒级别的粒度无法对插入的时间进行区分,在运行比较快的情况下,只有System.nanoTime()才可以将key的插入时间区分,默认设置count计数为1.如果能获取到,表示是旧的元素,那么就用新值覆盖旧值,计数+1,设置key的time为当前纳秒时间。

最后还需要进行排序,这里可以看出插入元素的逻辑主要是添加进入缓存,更新元素的时间和计数~

       /**
         * 添加元素
         * @param key
         * @param value
         */
        public void put(K key, V value) {
        Node node = caches.get(key);
        //如果新元素
        if (node == null) {
            //如果超过元素容纳量
            if (caches.size() >= capacity) {
                //移除count计数最小的那个key
                K leastKey = removeLeastCount();
                caches.remove(leastKey);
            }
            //创建新节点
            node = new Node(key,value,System.nanoTime(),1);
            caches.put(key, node);
        }else {
            //已经存在的元素覆盖旧值
            node.value = value;
            node.setCount(node.getCount()+1);
            node.setTime(System.nanoTime());
        }
        sort();
    }

每次put或者get元素都需要进行排序,排序的主要意义在于按照key的cout和time进行一个key顺序的重组,这里的逻辑是首先将缓存map创建成一个list,然后按照Node的value进行,重组整个map。

然后将原来的缓存清空,遍历这个map,把key和value的值放进去原来的缓存中的顺序就进行了重组~这里区分于LRU的不同点在于使用了java的集合API,LRU的排序是进行节点移动。而在LFU中实现比较复杂,因为put的时候不光得比较基数还有时间。

如果不借助java的API的话,可以先维护一个节点频率链表,每次将key保存在这个节点频率链表中移动指针,从而也间接可以实现排序~

   /**
     * 排序
     */
    private void sort() {

        List<Map.Entry<K, Node>> list = new ArrayList<>(caches.entrySet());
        Collections.sort(list, new Comparator<Map.Entry<K, Node>>() {
            @Override
            public int compare(Map.Entry<K, Node> o1, Map.Entry<K, Node> o2) {
                return o2.getValue().compareTo(o1.getValue());
            }
        });

        caches.clear();
        for (Map.Entry<K, Node> kNodeEntry : list) {
            caches.put(kNodeEntry.getKey(),kNodeEntry.getValue());
        }
    }

移除最小的元素

淘汰最小的元素这里调用了Collections.min方法,然后通过比较key的compare方法,找到计数最小和时间最长的元素,直接从缓存中移除~

       /**
         * 移除统计数或者时间比较最小的那个
         * @return
         */
        private K removeLeastCount() {
            Collection<Node> values = caches.values();
            Node min = Collections.min(values);
            return (K)min.getKey();

         }

2.4:获取元素

获取元素首先是从缓存map中获取,否则返回null,在获取到元素之后需要进行节点的更新,计数+1和刷新节点的时间,根据LFU的原则,在当前时间获取到这个节点以后,这个节点就暂时变成了热点节点,但是它的cout计数也有可能是小于某个节点的count的,所以此时不能将它直接移动到链表顶,还需要进行一次排序,重组它的位置~

/**
         * 获取元素
         * @param key
         * @return
         */
        public V get(K key){
        Node node = caches.get(key);
        if (node!=null){
            node.setCount(node.getCount()+1);
            node.setTime(System.nanoTime());
            sort();
            return (V)node.value;
        }
        return null;
    }

三:测试

首先声明一个LRU,然后默认的最大的大小为5,依次put进入A、B、C、D、E、F6个元素,此时将会找到计数最小和时间最短的元素,那么将会淘汰A(因为count值都是1)。

记着get两次B元素,那么B元素的count=3,时间更新为最新。

此时B将会移动到顶,接着在getC元素,C元素的count=2,时间会最新,那么此时因为它的count值依然小于B,所以它依然在B后面,在getF元素,F元素的count=2,又因为它的时间会最新,所以在与C相同的计数下,F元素更新(时间距离现在最近),所以链表将会移动,F会在C的前面,再次put一次C,此时C的count=3,同时时间为最新,那么此刻C的count和B保持一致,则他们比较时间,C明显更新,所以C将会排在B的前面,最终的顺序应该是:C->B->F->E->D

public static  void main(String[] args) {

        LFU<Integer, String> lruCache = new LFU<>(5);
        lruCache.put(1, "A");
        lruCache.put(2, "B");
        lruCache.put(3, "C");
        lruCache.put(4, "D");
        lruCache.put(5, "E");
        lruCache.put(6, "F");
        lruCache.get(2);
        lruCache.get(2);
        lruCache.get(3);
        lruCache.get(6);
        //重新put节点3
        lruCache.put(3,"C");
        final Map<Integer, Node> caches = (Map<Integer, Node>) lruCache.caches; for (Map.Entry<Integer, Node> nodeEntry : caches.entrySet()) { System.out.println(nodeEntry.getValue().value); } }

运行结果:

四:LRU和LFU的区别以及LFU的缺点

LRU和LFU侧重点不同,LRU主要体现在对元素的使用时间上,而LFU主要体现在对元素的使用频次上。

LFU的缺陷是:在短期的时间内,对某些缓存的访问频次很高,这些缓存会立刻晋升为热点数据,而保证不会淘汰,这样会驻留在系统内存里面。

而实际上,这部分数据只是短暂的高频率访问,之后将会长期不访问,瞬时的高频访问将会造成这部分数据的引用频率加快,而一些新加入的缓存很容易被快速删除,因为它们的引用频率很低。

五:总结

本篇针对LFU做了一个简单的介绍,并详细介绍了如何用java来实现LFU,并且和LRU做了一个简单的比较。针对一种缓存策略。

LFU有自己的独特使用场景,如何实现LFU和利用LFU的特性来实现开发过程部分功能是我们需要思考的。

实际在使用中LRU的使用频率要高于LFU,不过了解这种算法也算是程序员的必备技能。

来源:https://www.cnblogs.com/wyq178/p/11790015.html

Tags:

本文暂时没有评论,来添加一个吧(●'◡'●)

欢迎 发表评论:

最近发表
标签列表