附件从原文下载即可。
- //opencv2.4.9 + vs2012 + 64位
- #include <windows.h>
- #include <iostream>
- #include <fstream>
- #include <opencv2/opencv.hpp>
- using namespace cv;
- using namespace std;
- char* WcharToChar(const wchar_t* wp)
- {
- char *m_char;
- int len= WideCharToMultiByte(CP_ACP,0,wp,wcslen(wp),NULL,0,NULL,NULL);
- m_char=new char[len+1];
- WideCharToMultiByte(CP_ACP,0,wp,wcslen(wp),m_char,len,NULL,NULL);
- m_char[len]='\0';
- return m_char;
- }
- wchar_t* CharToWchar(const char* c)
- {
- wchar_t *m_wchar;
- int len = MultiByteToWideChar(CP_ACP,0,c,strlen(c),NULL,0);
- m_wchar=new wchar_t[len+1];
- MultiByteToWideChar(CP_ACP,0,c,strlen(c),m_wchar,len);
- m_wchar[len]='\0';
- return m_wchar;
- }
- wchar_t* StringToWchar(const string& s)
- {
- const char* p=s.c_str();
- return CharToWchar(p);
- }
- int main()
- {
- const string fileform = "*.png";
- const string perfileReadPath = "charSamples";
- const int sample_mun_perclass = 20;//训练字符每类数量
- const int class_mun = 10+26;//训练字符类数 0-9 A-Z 除了I、O
- const int image_cols = 8;
- const int image_rows = 16;
- string fileReadName,
- fileReadPath;
- char temp[256];
- float trainingData[class_mun*sample_mun_perclass][image_rows*image_cols] = {{0}};//每一行一个训练样本
- float labels[class_mun*sample_mun_perclass][class_mun]={{0}};//训练样本标签
- for(int i = 0; i <= class_mun - 1; i++)//不同类
- {
- //读取每个类文件夹下所有图像
- int j = 0;//每一类读取图像个数计数
- if (i <= 9)//0-9
- {
- sprintf(temp, "%d", i);
- //printf("%d\n", i);
- }
- else//A-Z
- {
- sprintf(temp, "%c", i + 55);
- //printf("%c\n", i+55);
- }
- fileReadPath = perfileReadPath + "/" + temp + "/" + fileform;
- cout<<"文件夹"<<temp<<endl;
- HANDLE hFile;
- LPCTSTR lpFileName = StringToWchar(fileReadPath);//指定搜索目录和文件类型,如搜索d盘的音频文件可以是"D:\\*.mp3"
- WIN32_FIND_DATA pNextInfo; //搜索得到的文件信息将储存在pNextInfo中;
- hFile = FindFirstFile(lpFileName,&pNextInfo);//请注意是 &pNextInfo , 不是 pNextInfo;
- if(hFile == INVALID_HANDLE_VALUE)
- {
- continue;//搜索失败
- }
- //do-while循环读取
- do
- {
- if(pNextInfo.cFileName[0] == '.')//过滤.和..
- continue;
- j++;//读取一张图
- //wcout<<pNextInfo.cFileName<<endl;
- //printf("%s\n",WcharToChar(pNextInfo.cFileName));
- //对读入的图片进行处理
- Mat srcImage = imread( perfileReadPath + "/" + temp + "/" + WcharToChar(pNextInfo.cFileName),CV_LOAD_IMAGE_GRAYSCALE);
- Mat resizeImage;
- Mat trainImage;
- Mat result;
- resize(srcImage,resizeImage,Size(image_cols,image_rows),(0,0),(0,0),CV_INTER_AREA);//使用象素关系重采样。当图像缩小时候,该方法可以避免波纹出现
- threshold(resizeImage,trainImage,0,255,CV_THRESH_BINARY|CV_THRESH_OTSU);
- for(int k = 0; k<image_rows*image_cols; ++k)
- {
- trainingData[i*sample_mun_perclass+(j-1)][k] = (float)trainImage.data[k];
- //trainingData[i*sample_mun_perclass+(j-1)][k] = (float)trainImage.at<unsigned char>((int)k/8,(int)k%8);//(float)train_image.data[k];
- //cout<<trainingData[i*sample_mun_perclass+(j-1)][k] <<" "<< (float)trainImage.at<unsigned char>(k/8,k%8)<<endl;
- }
- }while (FindNextFile(hFile,&pNextInfo) && j<sample_mun_perclass);//如果设置读入的图片数量,则以设置的为准,如果图片不够,则读取文件夹下所有图片
- }
- // Set up training data Mat
- Mat trainingDataMat(class_mun*sample_mun_perclass, image_rows*image_cols, CV_32FC1, trainingData);
- cout<<"trainingDataMat——OK!"<<endl;
- // Set up label data
- for(int i = 0;i <= class_mun-1; ++i)
- {
- for(int j = 0;j <= sample_mun_perclass - 1; ++j)
- {
- for(int k = 0;k < class_mun; ++k)
- {
- if(k == i)
- if (k == 18)
- {
- labels[i*sample_mun_perclass + j][1] = 1;
- }
- else if(k == 24)
- {
- labels[i*sample_mun_perclass + j][0] = 1;
- }
- else
- {
- labels[i*sample_mun_perclass + j][k] = 1;
- }
- else
- labels[i*sample_mun_perclass + j][k] = 0;
- }
- }
- }
- Mat labelsMat(class_mun*sample_mun_perclass, class_mun, CV_32FC1,labels);
- cout<<"labelsMat:"<<endl;
- ofstream outfile("out.txt");
- outfile<<labelsMat;
- //cout<<labelsMat<<endl;
- cout<<"labelsMat——OK!"<<endl;
- //训练代码
- cout<<"training start...."<<endl;
- CvANN_MLP bp;
- // Set up BPNetwork's parameters
- CvANN_MLP_TrainParams params;
- params.train_method=CvANN_MLP_TrainParams::BACKPROP;
- params.bp_dw_scale=0.001;
- params.bp_moment_scale=0.1;
- params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,10000,0.0001); //设置结束条件
- //params.train_method=CvANN_MLP_TrainParams::RPROP;
- //params.rp_dw0 = 0.1;
- //params.rp_dw_plus = 1.2;
- //params.rp_dw_minus = 0.5;
- //params.rp_dw_min = FLT_EPSILON;
- //params.rp_dw_max = 50.;
- //Setup the BPNetwork
- Mat layerSizes=(Mat_<int>(1,5) << image_rows*image_cols,128,128,128,class_mun);
- bp.create(layerSizes,CvANN_MLP::SIGMOID_SYM,1.0,1.0);//CvANN_MLP::SIGMOID_SYM
- //CvANN_MLP::GAUSSIAN
- //CvANN_MLP::IDENTITY
- cout<<"training...."<<endl;
- bp.train(trainingDataMat, labelsMat, Mat(),Mat(), params);
- bp.save("../bpcharModel.xml"); //save classifier
- cout<<"training finish...bpModel1.xml saved "<<endl;
- //测试神经网络
- cout<<"测试:"<<endl;
- Mat test_image = imread("test4.png",CV_LOAD_IMAGE_GRAYSCALE);
- Mat test_temp;
- resize(test_image,test_temp,Size(image_cols,image_rows),(0,0),(0,0),CV_INTER_AREA);//使用象素关系重采样。当图像缩小时候,该方法可以避免波纹出现
- threshold(test_temp,test_temp,0,255,CV_THRESH_BINARY|CV_THRESH_OTSU);
- Mat_<float>sampleMat(1,image_rows*image_cols);
- for(int i = 0; i<image_rows*image_cols; ++i)
- {
- sampleMat.at<float>(0,i) = (float)test_temp.at<uchar>(i/8,i%8);
- }
- Mat responseMat;
- bp.predict(sampleMat,responseMat);
- Point maxLoc;
- double maxVal = 0;
- minMaxLoc(responseMat,NULL,&maxVal,NULL,&maxLoc);
- if (maxLoc.x <= 9)//0-9
- {
- sprintf(temp, "%d", maxLoc.x);
- //printf("%d\n", i);
- }
- else//A-Z
- {
- sprintf(temp, "%c", maxLoc.x + 55);
- //printf("%c\n", i+55);
- }
- cout<<"识别结果:"<<temp<<"相似度:"<<maxVal*100<<"%"<<endl;
- imshow("test_image",test_image);
- waitKey(0);
- return 0;
- }
本文暂时没有评论,来添加一个吧(●'◡'●)