计算机系统应用教程网站

网站首页 > 技术文章 正文

Java 集合了解多少?

btikc 2024-09-11 02:00:04 技术文章 19 ℃ 0 评论

Java 集合,也叫作容器,主要是由两大接口派生而来:一个是 Collection接口,主要用于存放单一元素;另一个是 Map 接口,主要用于存放键值对。对于Collection 接口,下面又有三个主要的子接口:List、Set 、 Queue。本文将详细介绍这些接口及其实现类,并通过源码解读和实例来帮助你更好地理解它们。


Collection 接口


Collection 是 Java 集合框架的根接口,抽象了集合对象的基本操作。常用的方法有:


  • add(E e):添加元素到集合中。
  • remove(Object o):从集合中移除指定元素。
  • size():返回集合中元素的数量。
  • contains(Object o):判断集合中是否包含指定元素。
  • iterator():返回集合的迭代器。


java


public interface Collection<E> extends Iterable<E> {
    boolean add(E e);
    boolean remove(Object o);
    int size();
    boolean contains(Object o);
    Iterator<E> iterator();
    // 其他方法省略
}



List 接口


List 接口继承自 Collection 接口,表示一个有序的元素集合。常用的实现类有 ArrayList、LinkedList、Vector 和 Stack。


java


public interface List<E> extends Collection<E> {
    void add(int index, E element);
    E get(int index);
    E remove(int index);
    int indexOf(Object o);
    // 其他方法省略
}



ArrayList


ArrayList 是基于动态数组实现的 List,支持快速随机访问。它的内部实现是一个数组,当数组容量不足时,自动扩容为原来的1.5倍。


java


public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable {
    private transient Object[] elementData; // 存放元素的数组
    private int size; // 元素数量
    
    public ArrayList() {
        this.elementData = new Object[10]; // 默认初始容量为10
    }

    public boolean add(E e) {
        ensureCapacity(size + 1); // 检查容量
        elementData[size++] = e;
        return true;
    }

    private void ensureCapacity(int minCapacity) {
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }

    private void grow(int minCapacity) {
        int oldCapacity = elementData.length;
        int newCapacity = oldCapacity + (oldCapacity >> 1); // 扩容为1.5倍
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
        elementData = Arrays.copyOf(elementData, newCapacity);
    }

    public E get(int index) {
        rangeCheck(index);
        return elementData(index);
    }

    private void rangeCheck(int index) {
        if (index >= size)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }
    
    // 其他方法省略
}



LinkedList


LinkedList 是基于双向链表实现的 List,适合频繁的插入和删除操作。


java


public class LinkedList<E> extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable {
    
    private static class Node<E> {
        E item;
        Node<E> next;
        Node<E> prev;
        
        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }
    
    private transient Node<E> first;
    private transient Node<E> last;
    private int size;
    
    public LinkedList() {
    }
    
    public boolean add(E e) {
        linkLast(e);
        return true;
    }

    void linkLast(E e) {
        final Node<E> l = last;
        final Node<E> newNode = new Node<>(l, e, null);
        last = newNode;
        if (l == null)
            first = newNode;
        else
            l.next = newNode;
        size++;
    }
    
    public E get(int index) {
        checkElementIndex(index);
        return node(index).item;
    }
    
    Node<E> node(int index) {
        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }
    
    private void checkElementIndex(int index) {
        if (!isElementIndex(index))
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    private boolean isElementIndex(int index) {
        return index >= 0 && index < size;
    }
    
    // 其他方法省略
}



Set 接口


Set 接口继承自 Collection 接口,表示一个不包含重复元素的集合。常用的实现类有 HashSet、LinkedHashSet 和 TreeSet。


java


public interface Set<E> extends Collection<E> {
    // 继承了 Collection 的所有方法
}



HashSet


HashSet 是基于哈希表实现的 Set,不保证元素的顺序。


java


public class HashSet<E> extends AbstractSet<E> implements Set<E>, Cloneable, java.io.Serializable {
    private transient HashMap<E, Object> map;

    // Dummy value to associate with an Object in the backing Map
    private static final Object PRESENT = new Object();

    public HashSet() {
        map = new HashMap<>();
    }

    public boolean add(E e) {
        return map.put(e, PRESENT) == null;
    }

    public boolean contains(Object o) {
        return map.containsKey(o);
    }

    public boolean remove(Object o) {
        return map.remove(o) == PRESENT;
    }

    public int size() {
        return map.size();
    }
    
    // 其他方法省略
}



Queue 接口


Queue 接口继承自 Collection 接口,表示一个先进先出的队列。常用的实现类有 LinkedList 和 PriorityQueue。


java


public interface Queue<E> extends Collection<E> {
    boolean offer(E e);
    E poll();
    E peek();
    // 其他方法省略
}



PriorityQueue


PriorityQueue 是一个基于优先级堆实现的队列,元素按优先级顺序进行排序。


java


public class PriorityQueue<E> extends AbstractQueue<E> implements java.io.Serializable {
    private transient Object[] queue;
    private int size;
    private final Comparator<? super E> comparator;

    public PriorityQueue() {
        this.queue = new Object[11];
        this.comparator = null;
    }

    public boolean offer(E e) {
        if (e == null)
            throw new NullPointerException();
        int i = size;
        if (i >= queue.length)
            grow(i + 1);
        size = i + 1;
        if (i == 0)
            queue[0] = e;
        else
            siftUp(i, e);
        return true;
    }

    private void siftUp(int k, E x) {
        if (comparator != null)
            siftUpUsingComparator(k, x);
        else
            siftUpComparable(k, x);
    }

    private void siftUpComparable(int k, E x) {
        Comparable<? super E> key = (Comparable<? super E>) x;
        while (k > 0) {
            int parent = (k - 1) >>> 1;
            Object e = queue[parent];
            if (key.compareTo((E) e) >= 0)
                break;
            queue[k] = e;
            k = parent;
        }
        queue[k] = key;
    }

    private void grow(int minCapacity) {
        int oldCapacity = queue.length;
        int newCapacity = oldCapacity + (oldCapacity >> 1);
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
        queue = Arrays.copyOf(queue, newCapacity);
    }

    public E poll() {
        if (size == 0)
            return null;
        int s = --size;
        E result = (E) queue[0];
        E x = (E) queue[s];
        queue[s] = null;
        if (s != 0)
            siftDown(0, x);
        return result;
    }

    private void siftDown(int k, E x) {
        if (comparator != null)
            siftDownUsingComparator(k, x);
        else
            siftDownComparable(k, x);
    }

    private void siftDownComparable(int k, E x) {
        Comparable<? super E> key = (Comparable<? super E>) x;
        int half = size >>> 1;
        while (k < half) {
            int child = (k << 1) + 1;
            Object c = queue[child];
            int right = child + 1;
            if (right < size && ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
                c = queue[child = right];
            if (key.compareTo((E) c) <= 0)
                break;
            queue[k] = c;
            k = child;
        }
        queue[k] = key;
    }
    
    public E peek() {
        return (size == 0) ? null : (E) queue[0];
    }
    
    // 其他方法省略
}



Map 接口


Map 接口表示一个键值对集合,每个键最多只能映射到一个值。常用的实现类有 HashMap、LinkedHashMap 和 TreeMap。


java


public interface Map<K, V> {
    V put(K key, V value);
    V get(Object key);
    V remove(Object key);
    boolean containsKey(Object key);
    int size();
    Set<K> keySet();
    Collection<V> values();
    // 其他方法省略
}



HashMap


HashMap 是基于哈希表实现的 Map,允许使用 null 键和 null 值,不保证元素的顺序。


java


public class HashMap<K, V> extends AbstractMap<K, V> implements Map<K, V>, Cloneable, Serializable {
    static final int DEFAULT_INITIAL_CAPACITY = 16;
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    transient Node<K, V>[] table;
    transient int size;
    int threshold;
    final float loadFactor;

    static class Node<K, V> implements Map.Entry<K, V> {
        final int hash;
        final K key;
        V value;
        Node<K, V> next;

        Node(int hash, K key, V value, Node<K, V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }
    }

    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K, V>[] tab; Node<K, V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K, V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K, V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1)
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) {
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

    final Node<K, V>[] resize() {
        Node<K, V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1;
        }
        else if (oldThr > 0)
            newCap = oldThr;
        else {
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K, V>[] newTab = (Node<K, V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K, V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K, V>)e).split(this, newTab, j, oldCap);
                    else {
                        Node<K, V> loHead = null, loTail = null;
                        Node<K, V> hiHead = null, hiTail = null;
                        Node<K, V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

    final Node<K, V> newNode(int hash, K key, V value, Node<K, V> next) {
        return new Node<>(hash, key, value, next);
    }
    
    // 其他方法省略
}



Java 集合框架提供了丰富的数据结构和算法,能够满足各种常见的编程需求。在实际开发中,选择合适的集合类型可以显著提高程序的性能和可读性。

?

Tags:

本文暂时没有评论,来添加一个吧(●'◡'●)

欢迎 发表评论:

最近发表
标签列表