计算机系统应用教程网站

网站首页 > 技术文章 正文

使用Docker(Mac)搭建 Nginx/Openresty-Kafka-kafkaManager

btikc 2024-09-12 12:05:09 技术文章 27 ℃ 0 评论

使用Docker(Mac)搭建 Nginx/Openresty - Kafka - kafkaManager

本文默认读者已经对Docker有一定了解,且清楚使用Docker进行部署的优势。

1.安装Docker(Mac)

官网:https://docs.docker.com/docker-for-mac/install/

1.1 下载 Docker for Mac

地址:https://store.docker.com/editions/community/docker-ce-desktop-mac

1.2 下载完成以后,双击打开文件Docker.dmg

image.png

1.3双击Docker.app启动

Mac顶部状态栏会出现鲸鱼图标

image.png

1.4点击鲸鱼图标可以进行设置

1.5 Check versions

$ docker --version
Docker version 18.03, build c97c6d6
$ docker-compose --version
docker-compose version 1.21.2, build 8dd22a9
$ docker-machine --version
docker-machine version 0.14.0, build 9ba6da9

1.6 Hello Word

1.6.1 打开命令行终端,通过运行简单的Docker映像测试您的安装工作。

$ docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
ca4f61b1923c: Pull complete
Digest: sha256:ca0eeb6fb05351dfc8759c20733c91def84cb8007aa89a5bf606bc8b315b9fc7
Status: Downloaded newer image for hello-world:latest
Hello from Docker!
This message shows that your installation appears to be working correctly.
...

1.6.2 启动Dockerized web server

$ docker run -d -p 80:80 --name webserver nginx

1.6.3 打开浏览器,输入http://localhost/

常用命令:

docker ps 查看正在运行的容器
docker stop停止正在运行的容器
docker start启动容器
docker ps -a查看终止状态的容器
docker rm -f webserver命令来移除正在运行的容器
docker list 列出本地镜像
docker rmi 删除的镜像

2.使用Docker安装Nginx

Docker Store 地址:https://store.docker.com/images/nginx

其实在上文中Hello World即已经安装了nginx。

2.1 拉取 image

docker pull nginx

3.2 创建Nginx容器

docker run --name mynginx -p 80:80 -v /Users/gaoguangchao/Work/opt/local/nginx/logs:/var/log/nginx -v /Users/gaoguangchao/Work/opt/local/nginx/conf.d:/etc/nginx/conf.d -v /Users/gaoguangchao/Work/opt/local/nginx/nginx.conf:/etc/nginx/nginx.conf:ro -v /Users/gaoguangchao/Work/opt/local/nginx/html:/etc/nginx/html -d nginx

-d 以守护进程运行(运行在后台)

--name nginx 容器名称;

-p 80:80 端口映射

-v 配置挂载路径 宿主机路径:容器内的路径

关于挂载

  1. 为了能直接修改配置文件,以实现对Nginx的定制化,需要进行Docker的相关目录挂在宿主机上。
  2. 需要挂载的目录/文件:/etc/nginx/conf.d /etc/nginx/nginx.conf /etc/nginx/html
  3. 有一点尤其需要注意,当挂载的为文件而非目录时,需要注意以下两点:

a.挂载文件命令: -v 宿主机路径:容器内的路径:ro

b.宿主机需要先创建后文件,无法自动创建,反之将报错

nginx.conf 示例

#user nobody;
worker_processes 1;
#error_log logs/error.log;
#error_log logs/error.log notice;
#error_log logs/error.log info;
#pid logs/nginx.pid;
events {
 worker_connections 1024;
}
http {
 include mime.types;
 default_type application/octet-stream;
 #access_log logs/access.log main;
 sendfile on;
 #tcp_nopush on;
 #keepalive_timeout 0;
 keepalive_timeout 65;
 #gzip on;
 upstream demo {
 server 127.0.0.1:8080;
 }
 server {
 listen 80;
 server_name request_log;
 location / {
 root html;
 #index index.html index.htm;
 proxy_connect_timeout 3; 
 proxy_send_timeout 30; 
 proxy_read_timeout 30; 
 proxy_pass http://demo; 
 }
 
 #error_page 404 /404.html;
 # redirect server error pages to the static page /50x.html
 #
 error_page 500 502 503 504 /50x.html;
 location = /50x.html {
 root html;
 }
 }
}

2.3 浏览器访问

在调试过程中往往不会很顺利,这里的技巧是通过阅读error.log中的异常日志进行

2.4 配置反向代理

此处是本机启动一个 SpringBoot web server,端口为:8080,浏览器访问:http://localhost:8080/index/hello

按照上节中nginx.conf示例中的配置方式,增加upstream、server、proxy_pass相关配置,对80端口进行监听,重启nginx容器。

docker restart mynginx

浏览器访问:http://localhost/index/hello,可以看到正常访问。

3.使用Docker安装Openresty

Openresty是在Nginx基础上做了大量的定制扩展,其安装过程和Nginx基本一致。

Docker Store 地址:https://store.docker.com/community/images/openresty/openresty

3.1 拉取 image

docker pull openresty/openresty

3.2 创建Openresty容器

docker run -d --name="openresty" -p 80:80 -v /Users/gaoguangchao/Work/opt/local/openresty/nginx.conf:/usr/local/openresty/nginx/conf/nginx.conf:ro -v /Users/gaoguangchao/Work/opt/local/openresty/logs:/usr/local/openresty/nginx/logs -v /Users/gaoguangchao/Work/opt/local/openresty/conf.d:/etc/nginx/conf.d -v /Users/gaoguangchao/Work/opt/local/openresty/html:/etc/nginx/html openresty/openresty

注意事项和安装Nginx基本一致,在此不再赘述。

4.使用Docker安装Kafka

Docker Store 地址:https://store.docker.com/community/images/spotify/kafka

4.1 拉取 image

docker pull spotify/kafka

4.2 创建Kafka容器

运行命令:

docker run -p 2181:2181 -p 9092:9092 --env ADVERTISED_HOST=`127.0.0.1` --env ADVERTISED_PORT=9092 spotify/kafka

2181为zookeeper端口,9092为kafka端口

输出启动日志:

4.3 Check zookeeper是否启动

可以使用一些可视化客户端连接端口,进行监控,如zooInspector、Idea Zookeeper Plugin等

5.使用Docker安装Kafka Manager

Kafka Manager 是Yahoo开源的kafka监控和配置的web系统,可以进行kafka的日常监控和配置的动态修改。

Docker Store 地址:https://store.docker.com/community/images/sheepkiller/kafka-manager

5.1 拉取 image

docker pull sheepkiller/kafka-manager

5.2 创建Kafka Manager容器

运行命令:

docker run -it --rm -p 9000:9000 -e ZK_HOSTS="127.0.0.1:2181" -e APPLICATION_SECRET=letmein sheepkiller/kafka-manager

2181为上节中部署的zookeeper端口,9000为kafka-manager的web端口

输出启动日志:

5.3 访问Kafka Manager

浏览器访问:http://localhost:9000

按照页面上的操作按钮进行kafka集群的注册,具体使用方式再次不做详细介绍。

注册配置后的界面:

6.Kafka消息生产与消费

6.1创建maven项目

pom依赖

 <dependencies>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>jcl-over-slf4j</artifactId>
 <version>${org.slf4j-version}</version>
 <scope>runtime</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-1.2-api</artifactId>
 <version>${log4j2-version}</version>
 </dependency>
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-slf4j-impl</artifactId>
 <version>${log4j2-version}</version>
 </dependency>
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-api</artifactId>
 <version>${log4j2-version}</version>
 </dependency>
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-core</artifactId>
 <version>${log4j2-version}</version>
 </dependency>
 <dependency>
 <groupId>com.lmax</groupId>
 <artifactId>disruptor</artifactId>
 <version>3.2.0</version>
 </dependency>
 <dependency>
 <groupId>com.sankuai.meituan</groupId>
 <artifactId>scribe-log4j2</artifactId>
 <version>1.0.9</version>
 </dependency>
 <dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka-clients</artifactId>
 <version>0.10.1.0</version>
 </dependency>
 </dependencies>

6.2 增加log4j2配置

配置log4j2为能正常打印debug日志,方便进行异常排查 (重要)

在resources目录下增加log4j2.xml文件

<?xml version="1.0" encoding="UTF-8"?>
<configuration status="WARN">
 <Properties>
 <Property name="pattern_layout">%d %-5p (%F:%L) - %m%n</Property>
 <Property name="LOG_HOME">/logs</Property>
 </Properties>
 <appenders>
 <Console name="CONSOLE" target="SYSTEM_OUT">
 <PatternLayout pattern="%d %-5p (%F:%L) - %m%n"/>
 </Console>
 </appenders>
 <loggers>
 <root level="debug" includeLocation="true">
 <appender-ref ref="CONSOLE"/>
 </root>
 </loggers>
</configuration>

关于log4j2的使用,有兴趣的可以了解:Log4j1升级Log4j2实战

6.3 创建生产者示例

package com.moko.kafka;
import org.apache.kafka.clients.producer.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.Properties;
public class MokoProducer extends Thread {
 private static final Logger LOGGER = LoggerFactory.getLogger(MokoProducer.class);
 private final KafkaProducer<String, String> producer;
 private final String topic;
 private final boolean isAsync;
 public MokoProducer(String topic, boolean isAsync) {
 Properties properties = new Properties();
 properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "78c4f4a0f989:9092");//broker 集群地址
 properties.put(ProducerConfig.CLIENT_ID_CONFIG, "MokoProducer");//自定义客户端id
 properties.put(ProducerConfig.ACKS_CONFIG, "all");
 properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");//key 序列号方式
 properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");//value 序列号方式
 this.producer = new KafkaProducer<String, String>(properties);
 this.topic = topic;
 this.isAsync = isAsync;
 }
 @Override
 public void run() {
 int seq = 0;
 while (true) {
 String msg = "Msg: " + seq;
 if (isAsync) {//异步
 producer.send(new ProducerRecord<String, String>(this.topic, msg));
 } else {//同步
 producer.send(new ProducerRecord<String, String>(this.topic, msg),
 new MsgProducerCallback(msg));
 }
 seq++;
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
 /**
 * 消息发送后的回调函数
 */
 class MsgProducerCallback implements Callback {
 private final String msg;
 public MsgProducerCallback(String msg) {
 this.msg = msg;
 }
 public void onCompletion(RecordMetadata recordMetadata, Exception e) {
 if (recordMetadata != null) {
 LOGGER.info(msg + " be sended to partition no : " + recordMetadata.partition());
 } else {
 LOGGER.info("recordMetadata is null");
 }
 if (e != null)
 e.printStackTrace();
 }
 }
 public static void main(String args[]) {
 new MokoProducer("access-log", false).start();//开始发送消息
 }
}

简单运行后,打印日志如下:

6.4 创建消费者示例

package com.moko.kafka;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.Arrays;
import java.util.Properties;
public class MokoCustomer {
 private static final Logger LOGGER = LoggerFactory.getLogger(MokoCustomer.class);
 public static void main(String args[]) throws Exception {
 String topicName = "access-log";
 Properties props = new Properties();
 KafkaConsumer<String, String> consumer = getKafkaConsumer(props);
 consumer.subscribe(Arrays.asList(topicName));
 while (true) {
 ConsumerRecords<String, String> records = consumer.poll(100);
 if (!records.isEmpty()) {
 LOGGER.info("=========================");
 }
 for (ConsumerRecord<String, String> record : records) {
 LOGGER.info(record.value());
 }
 }
 }
 private static KafkaConsumer<String, String> getKafkaConsumer(Properties props) {
 props.put("bootstrap.servers", "172.18.153.41:9092");
 props.put("group.id", "group-1");
 props.put("enable.auto.commit", "true");
 props.put("auto.commit.interval.ms", "1000");
 props.put("session.timeout.ms", "30000");
 props.put("key.deserializer",
 "org.apache.kafka.common.serialization.StringDeserializer");
 props.put("value.deserializer",
 "org.apache.kafka.common.serialization.StringDeserializer");
 return new KafkaConsumer<String, String>(props);
 }
}

简单运行后,打印日志如下:

6.5 注意事项

由于是在本机使用Docker搭建的环境,遇到最多的问题就是网络问题,如host等的配置,但是只要意识到这点,通过注意分析各种异常日志,便不难排查解决。

项目目录结构

7.结语

致此,本文就介绍完了如何使用Docker搭建 Nginx/Openresty - Kafka - kafkaManager。

后续将会继续介绍如何使用Docker搭建一套 nginx+lua+kafka实现的日志收集的教程,敬请期待。

更好的阅读体验可以点击进入 简书 博客。


欢迎关注 高广超的 简书博客 与 收藏文章 !

欢迎关注 头条号:互联网技术栈

个人介绍:

高广超:多年一线互联网研发与架构设计经验,擅长设计与落地高可用、高性能、可扩展的互联网架构。

本文首发在 高广超的简书博客 转载请注明!

本文暂时没有评论,来添加一个吧(●'◡'●)

欢迎 发表评论:

最近发表
标签列表