我将使用 Python 代码举例说明如何在深度学习模型中结合注意力模块和残差模块。我们将以构建一个简单的神经网络为例,该网络包含残差块和自注意力机制。为了简化,我们将使用 PyTorch 框架来实现这个模型。
Python 代码示例
导入必要的库:
python
import torch
import torch.nn as nn
import torch.nn.functional as F
定义残差块:
python
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
定义自注意力模块:
python
class SelfAttention(nn.Module):
def __init__(self, k, heads):
super().__init__()
self.k, self.heads = k, heads
self.tokeys = nn.Linear(k, k * heads, bias=False)
self.toqueries = nn.Linear(k, k * heads, bias=False)
self.tovalues = nn.Linear(k, k * heads, bias=False)
self.unifyheads = nn.Linear(heads * k, k)
def forward(self, x):
b, t, k = x.size()
h = self.heads
queries = self.toqueries(x).view(b, t, h, k)
keys = self.tokeys(x).view(b, t, h, k)
values = self.tovalues(x).view(b, t, h, k)
keys = keys.transpose(1, 2).contiguous().view(b * h, t, k)
queries = queries.transpose(1, 2).contiguous().view(b * h, t, k)
values = values.transpose(1, 2).contiguous().view(b * h, t, k)
dot = torch.bmm(queries, keys.transpose(1, 2))
dot = F.softmax(dot, dim=2)
out = torch.bmm(dot, values).view(b, h, t, k)
out = out.transpose(1, 2).contiguous().view(b, t, h * k)
return self.unifyheads(out)
集成模型:
python
class IntegratedModel(nn.Module):
def __init__(self):
super(IntegratedModel, self).__init__()
self.resblock1 = ResidualBlock(1, 16)
self.attention = SelfAttention(k=16, heads=3)
self.resblock2 = ResidualBlock(16, 32)
# ... 其他层和操作
def forward(self, x):
x = self.resblock1(x)
x = x.view(x.size(0), x.size(1), -1) # 调整维度以适应自注意力模块
x = self.attention(x)
x = x.view(x.size(0), x.size(1), 28, 28) # 恢复维度
x = self.resblock2(x)
# ... 其他层和操作
return x
这个示例展示了如何在一个深度学习模型中结合残差块和自注意力机制。这只是一个基本的框架,具体的模型架构和维度需要根据实际任务进行调整
本文暂时没有评论,来添加一个吧(●'◡'●)