计算机系统应用教程网站

网站首页 > 技术文章 正文

【Python机器学习系列】一文教你建立决策树模型预测房价(源码)

btikc 2024-09-20 14:43:48 技术文章 21 ℃ 0 评论

这是我的第250篇原创文章。

一、引言

对于表格数据,一套完整的机器学习建模流程如下:

针对不同的数据集,有些步骤不适用,其中橘红色框为必要步骤,欢迎大家关注翻看我之前的一些相关文章。前面我介绍了机器学习模型的二分类任务,接下来做一个机器学习模型的回归任务系列,由于本系列案例数据质量较高,有些步骤跳过了,跳过的步骤将单独出文章总结!在Python中,可以使用Scikit-learn库来构建决策树回归模型进行预测,本文以预测房价为例,对这个过程做一个简要解读。

二、实现过程

2.1 读取数据

filename = 'data.csv'
dataset = pd.read_csv(filename, names=names, delim_whitespace=True)
df = pd.DataFrame(dataset)

df:

2.2 数据集划分

features = names[:-1]
target = ['MEDV']
#  划分数据集
X_train, X_test, y_train, y_test = train_test_split(df[features], df[target], test_size=0.2, random_state=0)

2.3 建模预测

model = DecisionTreeRegressor(random_state=0).fit(X_train, y_train)
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)

2.4 结果可视化

# 训练集预测值与真实值的对比
plt.plot(list(range(0,len(X_train))),y_train,marker='o')
plt.plot(list(range(0,len(X_train))),y_train_pred,marker='*')
plt.legend(['真实值','预测值'])
plt.xlabel('序列')
plt.ylabel('房价')
plt.title('训练集预测值与真实值的对比')
plt.show()

结果:

# 验证集预测值与真实值的对比
plt.plot(list(range(0,len(X_test))),y_test,marker='o')
plt.plot(list(range(0,len(X_test))),y_test_pred,marker='*')
plt.legend(['真实值','预测值'])
plt.xlabel('序列')
plt.ylabel('房价')
plt.title('验证集预测值与真实值的对比')
plt.show()

结果:

2.5 评价指标

# 评价指标
trainScore1 = math.sqrt(mean_squared_error(y_train, y_train_pred))
print('Train Score: %.2f RMSE' % (trainScore1))
testScore1 = math.sqrt(mean_squared_error(y_test, y_test_pred))
print('Test Score: %.2f RMSE' % (testScore1))


trainScore2 = mean_absolute_error(y_train, y_train_pred)
print('Train Score: %.2f MAE' % (trainScore2))
testScore2 = mean_absolute_error(y_test, y_test_pred)
print('Test Score: %.2f MAE' % (testScore2))


trainScore3 = r2_score(y_train, y_train_pred)
print('Train Score: %.2f R2' % (trainScore3))
testScore3 = r2_score(y_test, y_test_pred)
print('Test Score: %.2f R2' % (testScore3))


trainScore4 = mean_absolute_percentage_error(y_train, y_train_pred)
print('Train Score: %.2f MAPE' % (trainScore4))
testScore4 = mean_absolute_percentage_error(y_test, y_test_pred)
print('Test Score: %.2f MAPE' % (testScore4))

结果打印:

作者简介: 读研期间发表6篇SCI数据算法相关论文,目前在某研究院从事数据算法相关研究工作,结合自身科研实践经历持续分享关于Python、数据分析、特征工程、机器学习、深度学习、人工智能系列基础知识与案例。关注gzh:数据杂坛,获取数据和源码学习更多内容。

原文链接:
【Python机器学习系列】一文教你建立决策树模型预测房价(案例+源码)

本文暂时没有评论,来添加一个吧(●'◡'●)

欢迎 发表评论:

最近发表
标签列表