网站首页 > 技术文章 正文
PS: 这个博客写于3年前,airTest可能已有较大改动,仅供参考。
airTest是国内网易自研的一套基于图像识别进行UI自动化测试的框架,目前已经可以支持andriod,ios,web端的UI测试,在google开发者大会上得到了google的高度认可。
最近在学习使用这个框架,首先来了解下他的原理
一、 airTest框架的构成
airTest ---这里指的是airTest核心源代码
airTestIDE ---集成的开发环境,可以快速开发airTest脚本 (注意它自带了python 3.X版本,不能直接使用本地的python库)
Poco ---UI 控件检索工具,支持各种客户端
二、 airTest是如何进行识别的?
众所周知,airTest的最大亮点就是通过图像识别进行UI自动化测试,那么airTest的图像识别是如何进行的呢?
1. 获取屏幕截图
2. 根据用户传递的图片与截图进行对比
传入的图像需要进行缩放变化,写用例时候的截图进行变换后转换成跑用例时候的截图,以提高匹配成功率
image = self._resize_image(image, screen, ST.RESIZE_METHOD)
3. 图像匹配,这里用的是openCV的模版匹配和特征匹配
3.1.模板匹配 cv2.mathTemplate
def find_template(im_source, im_search, threshold=0.8, rgb=False):
"""函数功能:找到最优结果."""
# 第一步:校验图像输入
check_source_larger_than_search(im_source, im_search)
# 第二步:计算模板匹配的结果矩阵res
res = _get_template_result_matrix(im_source, im_search)
# 第三步:依次获取匹配结果
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
h, w = im_search.shape[:2]
# 求取可信度:
confidence = _get_confidence_from_matrix(im_source, im_search, max_loc, max_val, w, h, rgb)
# 求取识别位置: 目标中心 + 目标区域:
middle_point, rectangle = _get_target_rectangle(max_loc, w, h)
best_match = generate_result(middle_point, rectangle, confidence)
LOGGING.debug("threshold=%s, result=%s" % (threshold, best_match))
return best_match if confidence >= threshold else None
def _get_template_result_matrix(im_source, im_search):
"""求取模板匹配的结果矩阵."""
# 灰度识别: cv2.matchTemplate( )只能处理灰度图片参数
s_gray, i_gray = img_mat_rgb_2_gray(im_search), img_mat_rgb_2_gray(im_source)
return cv2.matchTemplate(i_gray, s_gray, cv2.TM_CCOEFF_NORMED)
3.2.特征匹配 cv2.FlannBasedMatcher(index_params,search_params).knnMatch(des1,des2,k=2)
def find_sift(im_source, im_search, threshold=0.8, rgb=True, good_ratio=FILTER_RATIO):
"""基于sift进行图像识别,只筛选出最优区域."""
# 第一步:检验图像是否正常:
if not check_image_valid(im_source, im_search):
return None
# 第二步:获取特征点集并匹配出特征点对: 返回值 good, pypts, kp_sch, kp_src
kp_sch, kp_src, good = _get_key_points(im_source, im_search, good_ratio)
# 第三步:根据匹配点对(good),提取出来识别区域:
if len(good) == 0:
# 匹配点对为0,无法提取识别区域:
return None
elif len(good) == 1:
# 匹配点对为1,可信度赋予设定值,并直接返回:
return _handle_one_good_points(kp_src, good, threshold) if ONE_POINT_CONFI >= threshold else None
elif len(good) == 2:
# 匹配点对为2,根据点对求出目标区域,据此算出可信度:
origin_result = _handle_two_good_points(im_source, im_search, kp_src, kp_sch, good)
if isinstance(origin_result, dict):
return origin_result if ONE_POINT_CONFI >= threshold else None
else:
middle_point, pypts, w_h_range = _handle_two_good_points(im_source, im_search, kp_src, kp_sch, good)
elif len(good) == 3:
# 匹配点对为3,取出点对,求出目标区域,据此算出可信度:
origin_result = _handle_three_good_points(im_source, im_search, kp_src, kp_sch, good)
if isinstance(origin_result, dict):
return origin_result if ONE_POINT_CONFI >= threshold else None
else:
middle_point, pypts, w_h_range = _handle_three_good_points(im_source, im_search, kp_src, kp_sch, good)
else:
# 匹配点对 >= 4个,使用单矩阵映射求出目标区域,据此算出可信度:
middle_point, pypts, w_h_range = _many_good_pts(im_source, im_search, kp_sch, kp_src, good)
# 第四步:根据识别区域,求出结果可信度,并将结果进行返回:
# 对识别结果进行合理性校验: 小于5个像素的,或者缩放超过5倍的,一律视为不合法直接raise.
_target_error_check(w_h_range)
# 将截图和识别结果缩放到大小一致,准备计算可信度
x_min, x_max, y_min, y_max, w, h = w_h_range
target_img = im_source[y_min:y_max, x_min:x_max]
resize_img = cv2.resize(target_img, (w, h))
confidence = _cal_sift_confidence(im_search, resize_img, rgb=rgb)
best_match = generate_result(middle_point, pypts, confidence)
print("[aircv][sift] threshold=%s, result=%s" % (threshold, best_match))
return best_match if confidence >= threshold else None
# 如何找到特征点集
def _get_key_points(im_source, im_search, good_ratio):
"""根据传入图像,计算图像所有的特征点,并得到匹配特征点对."""
# 准备工作: 初始化sift算子
sift = _init_sift()
# 第一步:获取特征点集,并匹配出特征点对: 返回值 good, pypts, kp_sch, kp_src
kp_sch, des_sch = sift.detectAndCompute(im_search, None)
kp_src, des_src = sift.detectAndCompute(im_source, None)
# When apply knnmatch , make sure that number of features in both test and
# query image is greater than or equal to number of nearest neighbors in knn match.
if len(kp_sch) < 2 or len(kp_src) < 2:
raise NoSiftMatchPointError("Not enough feature points in input images !")
# 匹配两个图片中的特征点集,k=2表示每个特征点取出2个最匹配的对应点:
matches = FLANN.knnMatch(des_sch, des_src, k=2)
good = []
# good为特征点初选结果,剔除掉前两名匹配太接近的特征点,不是独特优秀的特征点直接筛除(多目标识别情况直接不适用)
for m, n in matches:
if m.distance < good_ratio * n.distance:
good.append(m)
# good点需要去除重复的部分,(设定源图像不能有重复点)去重时将src图像中的重复点找出即可
# 去重策略:允许搜索图像对源图像的特征点映射一对多,不允许多对一重复(即不能源图像上一个点对应搜索图像的多个点)
good_diff, diff_good_point = [], [[]]
for m in good:
diff_point = [int(kp_src[m.trainIdx].pt[0]), int(kp_src[m.trainIdx].pt[1])]
if diff_point not in diff_good_point:
good_diff.append(m)
diff_good_point.append(diff_point)
good = good_diff
return kp_sch, kp_src, good
# sift对象
def _init_sift():
"""Make sure that there is SIFT module in OpenCV."""
if cv2.__version__.startswith("3."):
# OpenCV3.x, sift is in contrib module, you need to compile it seperately.
try:
sift = cv2.xfeatures2d.SIFT_create(edgeThreshold=10)
except:
print("to use SIFT, you should build contrib with opencv3.0")
raise NoSIFTModuleError("There is no SIFT module in your OpenCV environment !")
else:
# OpenCV2.x, just use it.
sift = cv2.SIFT(edgeThreshold=10)
return sift
以上两个匹配算法,哪个优先匹配上了,就直接返回结果
三、airTest的简单脚本运行机制
3.1 打开ariTestIDE,编写一个脚本,默认命名为: untitled.air
3.2 连接你的设备
3.3 编写一个简单的脚本
3.4 运行脚本
脚本实际显示的信息如下:
touch(Template(r"tpl1551777086787.png", record_pos=(0.379, 0.922), resolution=(1080, 2160)))
wait(Template(r"tpl1551778382115.png", record_pos=(-0.003, -0.551), resolution=(1080, 2160)))
touch(Template(r"tpl1551775745377.png", record_pos=(-0.007, -0.547), resolution=(1080, 2160)))
text("cmq00002@qq.com")
其中的record_pos为 【计算坐标对应的中点偏移值相对于分辨率的百分比】;【tpl1551777086787.png】为你在编写脚本时候截图的小图片
官网: http://airtest.netease.com/
官方API文档: https://airtest.readthedocs.io/zh_CN/latest/index.html
- 上一篇: 用人脸识别抓取王思聪吃热狗——真香
- 下一篇: XSLT 元素 x元素是啥
猜你喜欢
- 2024-09-27 Linux 理解K8S Deployment配置的详细解释输出
- 2024-09-27 XSLT 元素 x元素是啥
- 2024-09-27 用人脸识别抓取王思聪吃热狗——真香
- 2024-09-27 必学组合函数INDEX和MATCH,真的比VLOOKUP函数好用?分情况,未必
- 2024-09-27 python模拟哔哩哔哩滑块登入验证的实现
- 2024-09-27 opencv多目标匹配 opencv多目标识别
- 2024-09-27 Python OpenCV 的知识体系梳理 opencv-python-tutorial
- 2024-09-27 「技术分享」截图录屏-截长图的实现原理
- 2024-09-27 视觉信息辅助激光导航AGV的应用 智能agv的激光导航包含
- 2024-09-27 自动点赞工具软件的技术实现(艾思软件)
你 发表评论:
欢迎- 最近发表
-
- 在 Spring Boot 项目中使用 activiti
- 开箱即用-activiti流程引擎(active 流程引擎)
- 在springBoot项目中整合使用activiti
- activiti中的网关是干什么的?(activiti包含网关)
- SpringBoot集成工作流Activiti(完整源码和配套文档)
- Activiti工作流介绍及使用(activiti工作流会签)
- SpringBoot集成工作流Activiti(实际项目演示)
- activiti工作流引擎(activiti工作流引擎怎么用)
- 工作流Activiti初体验及在数据库中生成的表
- Activiti工作流浅析(activiti6.0工作流引擎深度解析)
- 标签列表
-
- oraclesql优化 (66)
- 类的加载机制 (75)
- feignclient (62)
- 一致性hash算法 (71)
- dockfile (66)
- 锁机制 (57)
- javaresponse (60)
- 查看hive版本 (59)
- phpworkerman (57)
- spark算子 (58)
- vue双向绑定的原理 (68)
- springbootget请求 (58)
- docker网络三种模式 (67)
- spring控制反转 (71)
- data:image/jpeg (69)
- base64 (69)
- java分页 (64)
- kibanadocker (60)
- qabstracttablemodel (62)
- java生成pdf文件 (69)
- deletelater (62)
- com.aspose.words (58)
- android.mk (62)
- qopengl (73)
- epoch_millis (61)
本文暂时没有评论,来添加一个吧(●'◡'●)