计算机系统应用教程网站

网站首页 > 技术文章 正文

特征点的检测与匹配--系统总结 特征点提取与匹配

btikc 2024-10-08 01:21:45 技术文章 3 ℃ 0 评论


特征点:检测子(给一副图像找到特征点的位置)+描述子(特征向量,用于特征匹配)

一、图像特征介绍

1、图像特征点的应用

  • 相机标定:棋盘格角点阴影格式固定,不同视角检测到点可以得到匹配结果,标定相机内参
  • 图像拼接:不同视角匹配恢复相机姿态
  • 稠密重建:间接使用特征点作为种子点扩散匹配得到稠密点云
  • 场景理解:词袋方法,特征点为中心生成关键词袋(关键特征)进行场景识别

2、图像特征点的检测方法

  • 人工设计检测算法:sift、surf、orb、fast、hog
  • 基于深度学习的方法:人脸关键点检测、3D match点云匹配
  • 场景中的人工标记点:影视场景背景简单的标记,特殊二维码设计(快速,精度低)

3、图像特征点的基本要求

  • 差异性:视觉上场景上比较显著点,灰度变化明显,边缘点等
  • 重复性:同一个特征在不同视角中重复出现,旋转、光度、尺度不变性

二、特征检测子

1、Harris 角点检测(早期,原理简单,视频跟踪,快速检测)

https://zhuanlan.zhihu.com/p/90393907





  • 反映特征值情况,trace为迹
  • k的值越小,检测子越敏感
  • 只有当λ1和λ2同时取得最大值时,C才能取得较大值
  • 避免了特征值分解,提高检测计算效率
  • 非极大值抑制(Non-maximal Suppression) 选取局部响应最大值,避免重复的检测



检测结果:

2、基于LoG的多尺度特征检测子

  • 动机:Harris角点检测不具有尺度不变性,让特征点具有尺度不变性
  • 解决方法:尺度归一化LoG算子,处理尺度的变化
  • LoG算子:Lindeberg(1993)提出Laplacian of Gaussian (LoG)函数的极值点对应着特征点

尺度空间





  • 特征点位置的确定:
  • 1)尺度空间和图像空间上:3*3窗口,26个邻域,找极值点比其他都要大DoG,LoG找极大值或极小值
  • 2)横轴向代表离散位置,纵轴代表DoG响应值,在极值点邻域内求二阶函数的极值=准确像素位置




4、快速特征点检测方法:——实时性要求高

  • FAST特征点[3]:Feature from Accelerated Segment Test
    • 特性:通过检测局部像素灰度变化来确认特征点的位置,速度快,SIFT的100倍;不具有尺度和旋转不变性
    • 流程:
      • 1)以候选点p为圆心构建一个离散圆
      • 2)比较圆周上的像素与p点像素值
      • 3)当有连续的n个像素值明显亮于或者暗于p时,p被检测为特征点,例Fast9,Fast12
    • 检测:



三、特征描述子

特征描述子 Feature Descriptor

  • 每个特征点独特的身份认证
  • 同一空间点在不同视角的特征点具有高度相似的描述子
  • 不同特征点的的描述子差异性尽量大
  • 通常描述子是一个具有固定长度的向量

特征支持区域

  • 主方向:进行旋转并重新插值
  • 特征尺度:影响支持区域的大小

1、基于直方图的描述子



(2)


  • 统计局部梯度信息流程:
    • 1)将区域划分成4x4的block ;
    • 2)每个block内统计梯度方向 的直方图(高斯加权梯度作为系数)

(2)Sift描述子——生成描述子

(2)Sift描述子——归一化处理

  • 处理方式
    • 1)门限处理-直方图每个方向的梯度幅值不超过0.2
    • 2)描述子长度归一化
  • 特性:归一化处理提升了特征点光度变化的不变性
  • SIFT描述子变种:PCA-SIFT/SURF

(3)GLOH描述子[5]:Gradient Location-orientation Histogram

  • 一共有1+2x8=17 个blocks
  • 每个blocks计算16个方向的直方图
  • 描述子共16x17=272维
  • 通过PCA可以降维到128

(4)DAISY描述子[6]:每个圆的半径对应高斯的尺度

2、基于不变性的描述子

3、二进制描述子——BRIEF



四、特征匹配

计算两幅图像中特征描述子的匹配关系

1、距离度量

归一化互相关,1 ->非常匹配,0->不匹配

2、匹配策略

最近邻:加了距离约束,防止孤立点

3、高效匹配

4、特征匹配验证

参考

  1. T. Lindeberg. Detecting salient blob-like image structures and their scales with a scalespace primal sketch: A method for focus-of-attention. International Journal of Computer Vision, 11(3):283–318, Dec. 1993.
  2. T. Lindeberg. Feature detection with automatic scale selection. International Journal of Computer Vision, 30(2):79–116, Nov. 1998.
  3. E. Rosten and T. Drummond. Fusing points and lines for high performance tracking. In IEEE International Conference on Computer Vision (ICCV), 2005.
  4. Scharstein, D. and Szeliski, R. (2002). A taxonomy and evaluation of dense two-framestereo correspondence algorithms. International Journal of Computer Vision, 47(1):7–42.
  5. Mikolajczyk, K. and Schmid, C. (2005). A performance evaluation of local descriptors.IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):1615–1630.
  6. S. Winder and M. Brown. Learning local image descriptors. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2007.

End


声明:部分内容来源于网络,仅供读者学术交流之目的。文章版权归原作者所有。如有不妥,请联系删除。

Tags:

本文暂时没有评论,来添加一个吧(●'◡'●)

欢迎 发表评论:

最近发表
标签列表