网站首页 > 技术文章 正文
本文介绍了如何在Kubernetes中管理资源配额,主要是为Pod指定请求的资源数量及可用限制、为Pod设置默认的请求和可用限制、为集群设置默认的请求和可用限制、Pod的Kill策略以及监控,通过本文读者应该能够了解Kubernetes中的资源配额如何管理。
设置资源请求数量
创建Pod的时候,可以为每个容器指定资源消耗的限制。Pod的资源请求限制则是Pod中所有容器请求资源的总和。
apiVersion: v1 kind: Pod metadata: name: requests-pod spec: containers: - image: busybox command: ["dd", "if=/dev/zero", "of=/dev/null"] name: main resources: requests: cpu: 200m memory: 10Mi
如果不指定CPU请求资源,表示不关心容器会分到多少CPU资源,有可能会一直分不到而处于等待状态。指定资源请求表示Pod对资源的最小需求,因此在调度的时候会如果Node剩余的资源不能满足Pod的需求,则不会调度到对应的Node上。Scheduler调度的时候并不关注在调度时具体的资源使用情况,而是根据现存Pod的资源请求情况来进行调度。这就会有问题,特别是当允许Pod使用超过请求的资源时。下面的图一看就能理解。
调度判断首先将不符合请求的Node排除在外,然后将符合要求的Node进行排序。节点排序根据资源请求数量的不同分为两个策略,LeastRequestPolicy和MostRequestPolicy。从字面上我们可以看到,一个是优先分派到资源请求少的节点,一个是优先分派到资源请求多的节点。一般在生产环境,建议使用LeastRequestPolicy,便于将负载平均的分配到各个机器上。在公有云的环境中建议使用MostRequestPolicy,提高资源的利用率,减少成本。
在没有设置资源使用限制的情况下,Pod可能使用超过请求的资源数量。对于CPU资源来说,如果同时有两个Pod请求剩余的资源,在分配剩余资源时,调度器会根据请求数量的比例在不同的Pod间分配资源。例如Pod A请求100m的CPU,Pod B请求20m的CPU,在两个Pod中CPU使用超过请求时,会根据5:1的比例分配。
使用kubectl describe nodes命令可以查看Node资源使用的情况。
如果Kubernetes找不到满足资源请求的Node,则Pod创建会停留在Pending状态。
设置资源使用上限
Pod创建的时候,可以设置每个容器使用资源的上限,可以限制的资源包括CPU、内存等。如果不设置上限,则理论上可以使用Node的全部资源。如果要防止Node上的各个容器互相影响,最好为Pod指定上限。
CPU是一种可以压榨的资源,可以用满并且Pod之间不会互相影响。内存则不一样,Pod之间分配的内存不能互相使用。requests的资源数量必须与Node容量一样或者更小,limits资源数量的总和可以超过Node的容量。当节点的资源被全部使用完后,一些容器可能会被杀掉。特别是使用内存超限后,会被Kubernetes进行OOMKilled。如果这个Pod的重启策略是Always,很可能你都没注意到Pod被重启了,但是随着发生次数的增多,每次重启delay的时间就会增加。
apiVersion: v1 kind: Pod metadata: name: limit-pod spec: containers: - image: busybox command: ["dd", "if=/dev/zero", "of=/dev/null"] name: main resources: requests: cpu: 200m memory: 10Mi limits: cpu: 1 memory: 20Mi
容器中运行top命令你会发现,容器中能看到的CPU、内存总量是Node的总量。这样就会造成一些应用能够探测到的容量和Limits的限制不一样,从而造成使用超出请求的情况。
对于CPU、内存来说,可以利用Metadata获取的三种方式中提到的办法通过API来获取限制的大小,也可以在 /sys/fs/cgroup/cpu/cpu.cfs_quota_us、/sys/fs/cgroup/cpu/cpu.cfs_period_us来查看。
QoS:Pod Kill的策略
在Pod使用的资源超过Node容量时,Kubernetes为了保障Node的运行,会选择其中的一些Pod并杀掉,那么如何确定杀掉哪个Pod呢,这里就需要引入一个QoS的概念。
QoS是 Quality of Service,有三种Quality of Service 策略,Kubernetes依次选择三种策略的Pod进行Kill。如果两个的QoS一样,则选择资源利用率高的Kill。
- BestEffort 应用到没有资源限制的Pod上,可以使用尽可能多的资源,也可能第一个被杀死
- Burstable limits超过requests的Pod类型
- Guaranteed 适用于请求和上限一致的Pod(limits默认与requests相同),这种Pod不能使用超额的资源,但是会保证存活
对于单容器的Pod,遵循以下原则
对于多个容器的Pod,如果两个容器的策略不一致,就使用Burstable策略,一致则使用容器的策略。
设置Pod/Container的默认请求和限制 LimitRange
通过创建LimitRange对象,在一个命名空间内,可以为所有创建的Pod设置一个磨人的requests和limits的限制。
apiVersion: v1 kind: LimitRange metadata: name: limitrange-demo spec: limits: - type: Pod min: cpu: 50m meomery: 5Mi max: cpu: 1 meomery: 1Gi - type: Container defaultRequest: cpu: 100m memory: 10Mi default: cpu: 200m memory: 100Mi min: cpu: 50m memory: 5Mi max: cpu: 1 memory: 1Gi maxLimitRequestRatio: cpu: 4 memory: 10 - type: PersistentVolumeClaim min: storage: 1Gi max: storage: 10Gi
创建一个不符合LimitRange要求的Pod,则会出现以下报错。
设置集群的资源Quota
除了设置每个Pod的默认上限外,还可以通过ResourceQuota设置集群的可用资源上限。ResourceQuota可以设置一个集群可用的最大计算资源的数量,也可以设置用户可以创建的各种对象的数量。
apiVersion: v1 kind: ResourceQuota metadata: name: cpu-and-mem spec: hard: requests.cpu: 400m requests.memory: 200Mi limits.cpu: 600m limits.memory: 500Mi
查看当前的资源限制
还可以限制存储及各种对象的数量,具体参考下面的yaml。
apiVersion: v1 kind: ResourceQuota metadata: name: storage-object spec: hard: pods: 10 replicationcontrollers: 5 secrets: 10 configmaps: 10 persistentvolumeclaims: 4 services: 5 services.loadbalancers: 1 services.nodeports: 2 ssd.storageclass.storage.k8s.io/persistentvolumeclaims: 2
设置的Quota默认在命名空间内生效,也可以根据QoS来设定不同的生效范围。
apiVersion: v1 kind: ResourceQuota metadata: name: quota-qos spec: scopes: - BestEffort - NotTerminating hard: pods: 4
一共有四种策略:BestEffort、NotBestEffort、Terminating、NotTerminating。前两个根据QoS来选择Pod,后两个根据Pod是否设置了activeDeadlineSeconds属性来选择。看下图就能够明白了。
监控
Kubernetes本身包含了cAdvisor来监控容器和节点的运行情况,如果想要从整体上看资源的使用情况需要安装Heapster组件。但是这两个
kubectl top node kubectl top pod kubectl top pod --container
使用这两个命令可以查看短时间内的Pod、Node资源使用的情况,也可以查看每个容器资源使用的情况。如果想要将性能数据保存下来,需要安装heapster\influxdb\grafana。具体不在这篇文章中讲解了。
猜你喜欢
- 2024-10-10 K8S集群metrics-server组件安装 k8s集群包含哪些组件
- 2024-10-10 第6课 Kubernetes之深入掌握Pod机制及应用
- 2024-10-10 万字长文 | 使用 RBAC 限制对 Kubernetes 资源的访问
- 2024-10-10 Kubernetes:监控指南 kubernetes 监控
- 2024-10-10 《蹲坑学K8S》之21-1:Metrics-Server监控
- 2024-10-10 K8S架构设计及工作流程分析 k8s 结构图
- 2024-10-10 Metrics Server 快速安装 melsoft安装教程
- 2024-10-10 K8S系统的监控及HPA控制器 k8s dashboard 监控
- 2024-10-10 如何通过在多个Vagrant管理的虚拟机上部署多节点Kubernetes集群
- 2024-10-10 Kubernetes集群的自动水平伸缩 kubernetes 自动伸缩
你 发表评论:
欢迎- 最近发表
-
- 在 Spring Boot 项目中使用 activiti
- 开箱即用-activiti流程引擎(active 流程引擎)
- 在springBoot项目中整合使用activiti
- activiti中的网关是干什么的?(activiti包含网关)
- SpringBoot集成工作流Activiti(完整源码和配套文档)
- Activiti工作流介绍及使用(activiti工作流会签)
- SpringBoot集成工作流Activiti(实际项目演示)
- activiti工作流引擎(activiti工作流引擎怎么用)
- 工作流Activiti初体验及在数据库中生成的表
- Activiti工作流浅析(activiti6.0工作流引擎深度解析)
- 标签列表
-
- oraclesql优化 (66)
- 类的加载机制 (75)
- feignclient (62)
- 一致性hash算法 (71)
- dockfile (66)
- 锁机制 (57)
- javaresponse (60)
- 查看hive版本 (59)
- phpworkerman (57)
- spark算子 (58)
- vue双向绑定的原理 (68)
- springbootget请求 (58)
- docker网络三种模式 (67)
- spring控制反转 (71)
- data:image/jpeg (69)
- base64 (69)
- java分页 (64)
- kibanadocker (60)
- qabstracttablemodel (62)
- java生成pdf文件 (69)
- deletelater (62)
- com.aspose.words (58)
- android.mk (62)
- qopengl (73)
- epoch_millis (61)
本文暂时没有评论,来添加一个吧(●'◡'●)