计算机系统应用教程网站

网站首页 > 技术文章 正文

使用Python进行图像分割和对象计数实例

btikc 2024-10-12 10:22:00 技术文章 14 ℃ 0 评论

让我们以一个简单的场景为例,在该场景中我们有一个柠檬图像,我们想要对其中的柠檬进行分割和计数。

图像分割算法有分水岭算法、斑点计数算法、霍夫圆/椭圆算法、轮廓检测算法等。在本文中,我使用了轮廓检测和分水岭算法。

涉及的步骤:

  • 读取图像
  • 转换为HSV
  • 阈值
  • 模糊它
  • 删除多余/不需要的区域
  • 在原始图像上绘制轮廓
  • 使用分水岭来检测分离轮廓
  • 进行平均分水岭和轮廓检测以获得满意的结果。

首先,我们导入一些常见的Python依赖项。

from __future__ import print_function
import numpy as np
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
from skimage import io

from skimage.morphology import watershed
from skimage.feature import peak_local_max
from scipy import ndimage

我们创建一个Python函数以可视化图像。Python代码如下:

def show(img):
    plt.imshow(img)
    plt.show()

现在,我们读取图像。

#load
fp = "lemons1.jpg"
img = cv2.imread(fp)
show(img)
print(img.shape)

现在,我们对图像进行预处理。步骤包括:

  • HSV,这是人眼感知的颜色模型。
  • 阈值技术,通过选定的阈值像素强度将图像转换为二值图像(即只有2个像素值(0或255))。
  • 模糊图像,以删除图像中不必要的斑点。
#preprocessing the image
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
show(hsv)

h, s, v = cv2.split(hsv)
show(s)

_, thr = cv2.threshold(s, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
show(thr)

blur = cv2.medianBlur(thr, 5)
show(blur)

现在我们使用轮廓检测,在我们“模糊”的图像中找到柠檬。为了去除小的和无关紧要的轮廓,我们只选择那些面积大于2000的轮廓(任意值,是超参数)。

contours, hierarchy = cv2.findContours(blur,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
copy2 = img.copy()
count = []
for x in contours:
    area = cv2.contourArea(x)
    if area > 2000 :
        count.append(x)
cv2.drawContours(copy2, count, -1, (255,0,0), 3)
show(copy2)
print("number of lemons found via contour detection = ", len(count))

现在我们使用分水岭算法来分离相互接触的柠檬(如果有的话)。

copy3 = img.copy()
D = ndimage.distance_transform_edt(thr)
localMax = peak_local_max(D, indices=False, min_distance=70,
	labels=thr)

markers = ndimage.label(localMax, structure=np.ones((3, 3)))[0]
labels = watershed(-D, markers, mask=thr)
ws = len(np.unique(labels)) -1
copy3[labels == -1] = [255,0,0]
print("no. of lemons found via watershed algorithm = ", ws)

最后我们取两种方法的平均值并打印结果。

ans = int((len(count) + len(np.unique(labels)) -1) / 2)
print("number of lemon segments detected = ", ans)
show(copy2)

Tags:

本文暂时没有评论,来添加一个吧(●'◡'●)

欢迎 发表评论:

最近发表
标签列表