网站首页 > 技术文章 正文
作者:俊欣
来源:关于数据分析与可视化
今天小编来给大家介绍3个干货满满的计算机视觉方向的Python实战项目,主要用到的库有
- opencv-python
- numpy
- pillow
要是大家所配置的环境当中没有这几个模块的话,就需要先用pip命令下载安装
pip install opencv-python numpy pillow
边缘检测
边缘检测的基本思想就是简化图像信息,使用边缘线代表图像所携带信息,而这次我们要用到的则是Canny边缘检测算子,在Opencv当中需要调用的是cv.canny()方法即可,代码如下
import cv2 as cv
import matplotlib.pyplot as plt
img = cv.imread('导入图像的路径',0)
edges = cv.Canny(img,100,200)
plt.subplot(121)
plt.imshow(img, cmap='gray')
.........
plt.show()
output
将照片变成素描风格
我们最终要实现的目的在于将照片变成素描风格,大致的逻辑在于首先需要将图片变成灰色图像然后反转,在反转之后进行模糊化处理,代码如下
import cv2
img = cv2.imread("导入照片的路径")
## 将照片灰度化处理
gray_image = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
## 将灰度化的照片反转处理
inverted_gray_image = 255-gray_image
## 将反转的照片模糊化处理
blurred_inverted_gray_image = cv2.GaussianBlur(inverted_gray_image, (19,19),0)
## 再一次的进行反转
inverted_blurred_image = 255-blurred_inverted_gray_image
### 颜色减淡混合处理
sketck = cv2.divide(gray_image, inverted_blurred_image,scale= 256.0)
cv2.imshow("Original Image",img)
cv2.imshow("Pencil Sketch", sketck)
cv2.waitKey(0)
output
判断形状
现在我们需要来判断图片当中图形的轮廓,而识别轮廓的算法在opencv模块当中是有内置的,代码如下
import cv2
import numpy as np
from matplotlib import pyplot as plt
# 导入照片
img = cv2.imread('3.png')
# 将照片灰度化处理,当然要是您的照片已经是黑白的,就可以跳过这一步
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# setting threshold of the gray image
_, threshold = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# 识别轮廓的方法
contours, _ = cv2.findContours(
threshold, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
i = 0
for contour in contours:
# cv2.approxPloyDP() function to approximate the shape
approx = cv2.approxPolyDP(contour, 0.01 * cv2.arcLength(contour, True), True)
# 找到图片的中心点
M = cv2.moments(contour)
if M['m00'] != 0.0:
x = int(M['m10'] / M['m00'])
y = int(M['m01'] / M['m00'])
# 将轮廓的名字放在各个图形的中央
if len(approx) == 3:
cv2.putText(img, 'Triangle', (x, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2)
elif len(approx) == 4:
.......
elif len(approx) == 5:
......
elif len(approx) == 6:
......
else:
......
# 将最后的图形呈现出来
cv2.imshow('shapes', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
output
猜你喜欢
- 2024-10-12 智能监测:皮带输送系统堵料问题的解决方案
- 2024-10-12 Python-OpenCV 10. 图像边缘算法 opencv边缘识别
- 2024-10-12 Net AI学习笔记系列第五章 net教程
- 2024-10-12 深度学习和神经网络——图像读取和显示
- 2024-10-12 十三句Python搞定找茬游戏 找茬游戏规则
- 2024-10-12 「深度学习」手把手教你用PythonOpenCV物体识别-识别水果
- 2024-10-12 python代码实现OpenCV 轮廓近似原理
- 2024-10-12 OpenCV找出图片中的圆并标注圆心 opencv检测圆代码
- 2024-10-12 OpenCV(28)——凸包 opencv轮廓凹凸
- 2024-10-12 基于OpenCV实战:动态物体检测 opencv动态阈值
你 发表评论:
欢迎- 最近发表
- 标签列表
-
- oraclesql优化 (66)
- 类的加载机制 (75)
- feignclient (62)
- 一致性hash算法 (71)
- dockfile (66)
- 锁机制 (57)
- javaresponse (60)
- 查看hive版本 (59)
- phpworkerman (57)
- spark算子 (58)
- vue双向绑定的原理 (68)
- springbootget请求 (58)
- docker网络三种模式 (67)
- spring控制反转 (71)
- data:image/jpeg (69)
- base64 (69)
- java分页 (64)
- kibanadocker (60)
- qabstracttablemodel (62)
- java生成pdf文件 (69)
- deletelater (62)
- com.aspose.words (58)
- android.mk (62)
- qopengl (73)
- epoch_millis (61)
本文暂时没有评论,来添加一个吧(●'◡'●)