网站首页 > 技术文章 正文
前言;
更多学习资料(包含视频、技术学习路线图谱、文档等)后台私信《资料》免费领取
技术点包含了C/C++,Linux,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK等方面。
TCP与UDP区别
区别一、是否基于连接
TCP是面向连接的协议,而UDP是无连接的协议。即TCP面向连接;UDP是无连接的,即发送数据之前不需要建立连接。
区别二、可靠性 和 有序性 区别
TCP 提供交付保证(Tcp通过校验和,重传控制,序号标识,滑动窗口、确认应答实现可靠传输),无差错,不丢失,不重复,且按序到达,也保证了消息的有序性。该消息将以从服务器端发出的同样的顺序发送到客户端,尽管这些消息到网络的另一端时可能是无序的。TCP协议将会为你排好序。
UDP不提供任何有序性或序列性的保证。UDP尽最大努力交付,数据包将以任何可能的顺序到达。
TCP的逻辑通信信道是全双工的可靠信道,UDP则是不可靠信道
区别三、实时性
UDP具有较好的实时性,工作效率比TCP高,适用于对高速传输和实时性有较高的通信或广播通信。
区别四、协议首部大小
TCP首部开销20字节; UDP的首部开销小,只有8个字节 。
区别五、运行速度
TCP速度比较慢,而UDP速度比较快,因为TCP必须创建连接,以保证消息的可靠交付和有序性,毕竟TCP协议比UDP复杂。
区别六、拥塞机制
UDP没有拥塞控制,因此网络出现拥塞不会使源主机的发送速率降低(对实时应用很有用,如IP电话,实时视频会议等)
区别七、流模式(TCP)与数据报模式(UDP);
TCP面向字节流,实际上是TCP把数据看成一连串无结构的字节流;
UDP是面向报文的 。
区别八、资源占用
TCP对系统资源要求较多,UDP对系统资源要求较少。
TCP被认为是重量级的协议,而与之相比,UDP协议则是一个轻量级的协议。因为UDP传输的信息中不承担任何间接创造连接,保证交货或秩序的的信息。这也反映在用于承载元数据的头的大小。
区别九、应用
每一条TCP连接只能是点到点的;UDP支持一对一,一对多,多对一和多对多的交互通信 。基于UDP不需要建立连接,所以且适合多播的环境,UDP是大量使用在游戏和娱乐场所。
TCP UDP 的区别和具体应用场景
TCP和UDP
两者都是通信协议,TCP和UDP都是传输层协议,但是他们的通信机制和应用场景不同。
TCP
TCP(Transmission Control Protocol)又叫传输控制协议,TCP是面向连接的,并且是一种可靠的协议,在基于TCP进行通信时,通信双方需要建立TCP连接,建立连接需要经过三次握手,握手成功才可以通信。
UDP
UDP是一种面向无连接,切不可靠的协议,在通信过程中,它并不像TCP那样需要先建立一个连接,只要目的地址,端口号,源地址,端口号确定了,就可以直接发送信息报文,并且不需要一定能收到或者完整的数据。它仅仅提供了校验和机制来保障报文是否完整,若校验失败,则直接将报文丢弃,不做任何处理。
TCP,UDP的优缺点
TCP优点
可靠,稳定
TCP的可靠性体现在传输数据之前,三次握手建立连接(四次挥手断开连接),并且在数据传递时,有确认,窗口,重传,拥塞控制机制,数据传完之后断开连接来节省系统资源。
TCP缺点
慢,效率比较低,占用系统资源,容易被攻击
传输数据之前建立连接,这样会消耗时间,而且在消息传递时,确认机制,重传机制和拥塞机制都会消耗大量的时间,而且要在每台设备上维护所有的传输连接。而且每一个连接都会占用系统的CPU,内存等硬件软件资源。并且TCP的取而机制,三次握手机制导致TCP容易被人利用,实现DOS,DDOS攻击。
UDP优点
快,比TCP安全
UDP没有TCP的握手,确认窗口,重传,拥塞机制。UDP是一个无状态的传输机制,所以在传输数据时非常快。UDP没有TCP这些机制,相应被利用的漏洞就少一点。但是UDP的攻击也是存在的,比如:UDP 的flood攻击。
UDP缺点
不可靠,不稳定
因为UDP没有TCP的那些可靠机制,在网络质量不好的时候容易发生丢包。
应用场景
TCP应用场景
当对网络通信质量有要求时,比如:整个数据要准确无误的传递给对方,这往往对于一些要求可靠的应用,比如HTTP,HTTPS,FTP等传输文件的协议,POP,SMTP等邮件的传输协议。常见使用TCP协议的应用:
1.浏览器使用的:HTTP
2.FlashFXP:FTP
3.Outlook:POP,SMTP
4.QQ文件传输
UDP 应用场景
对当前网络通讯质量要求不高的时候,要求网络通讯速度尽量的快,这时就使用UDP
日常生活中常见使用UDP协议:
1.QQ语音
2.QQ视频
3.TFTP
内核常见文件
网络信息传输过程
发送端
应用层
socket
Linux系统中,socket 属于文件系统的一部分,网络通信可以被看作是对文件的读取,使得我们对网络的控制和对文件的控制一样方便。
UDP的socket处理过程:
TCP的socket处理过程:
应用层处理流程
网络应用调用Socket API socket (int family, int type, int protocol) 创建一个 socket,该调用最终会调用 Linux system call socket() ,并最终调用 Linux Kernel 的 sock_create() 方法。
该方法返回被创建好了的那个 socket 的 file descriptor。
对于每一个 userspace 网络应用创建的 socket,在内核中都有一个对应的 struct socket和 struct sock。其中,struct sock 有三个队列(queue),分别是 rx (接受), tx(发送) 和 err(错误),在 sock 结构被初始化的时候,这些缓冲队列也被初始化完成;在收据收发过程中,每个人 queue 保存要发送或者接受的每个 packet对应的 Linux 网络栈 sk_buffer 数据结构的实例 skb。(sk_buff(socket buffer)结构是linux网络代码中重要的数据结构,它管理和控制接收或发送数据包的信息。)
对于 TCP socket 来说,应用调用 connect()API ,使得客户端和服务器端通过该 socket 建立一个虚拟连接器。在此过程中,TCP 协议栈通过三次握手会建立 TCP 连接。默认的,该 API 会等到 TCP 握手完成连接建立后才返回。在建立连接的过程中的一个重要步骤是,确定双方使用的 Maxium Segemet Size (MSS)。
因为 UDP 是面向无连接的协议,因此它是不需要该步骤的。
应用调用 Linux Socket 的 send 或者 write API 开发出一个 message 给接收端
sock_sendmsg 被调用,它使用 socket descriptor 获取 sock struct,创建 message header 和 socket control message
_sock_sendmsg 被调用,根据 socket 的协议类型,调用相应协议的发送函数。
对于 TCP ,调用 tcp_sendmsg() 函数。
对于 UDP 来说,userspace 应用可以调用 send()/sendto()/sendmsg() 三个 system call 中的任意一个人来发送 UDP message,它们最终都会调用内核中的 udp_sendmsg() 函数。
传输层
传输层的最终目的是向它的用户提供高效的、可靠的和成本有效的数据传输服务,主要功能包括 :
(1)构造 TCP segment
(2)计算 checksum
(3)发送回复(ACK)包
(4)滑动窗口(sliding windown)等保证可靠性的操作。
TCP 协议栈的大致处理过程如下图所示:
TCP 栈简要过程:
tcp_sendmsg 函数会首先检查已经建立的 TCP connection 的状态,然后获取该连接的 MSS,开始 segement 发送流程。
构造 TCP 段的 playload:它在内核空间中创建该系统 packet 的 sk_buffer 数据结构的实例 skb,从 userspace buffer 中拷贝 packet 的数据到 skb 的 buffer。
构造 TCP header。
计算 TCP 校验和(checksum)和 顺序号 (sequence number)。
TCP 校验和是一个端到端的校验和,由发送端计算,然后由接收端验证。其目的是为了发现TCP首部和数据在发送端到接收端之间发生的任何改动。如果接收方检测到校验和有差错,则TCP段会被直接丢弃。TCP校验和覆盖 TCP 首部和 TCP 数据。
发到 IP 层处理:调用 IP handler 句柄 ip_queue_xmit,将 skb 传入 IP 处理流程。
UDP 栈简要过程
UDP 将 message 封装成 UDP 数据报
调用 ip_append_data() 方法将 packet 送到 IP 层进行处理。
IP 网络层 - 添加header 和 checksum,路由处理,IP fragmentation
网络层的任务就是选择合适的网间路由和交换结点, 确保数据及时传送。网络层将数据链路层提供的帧组成数据包,包中封装有网络层包头,其中含有逻辑地址信息- -源站点和目的站点地址的网络地址。
其主要任务包括
(1)路由处理,即选择下一跳
(2)添加 IP header
(3)计算 IP header checksum,用于检测 IP 报文头部在传播过程中是否出错
(4)可能的话,进行 IP 分片
(5)处理完毕,获取下一跳的 MAC 地址,设置链路层报文头,然后转入链路层处理。
接收端
传输层 (TCP/UDP)
传输层 TCP 处理入口在 tcp_v4_rcv 函数(位于 linux/net/ipv4/tcp ipv4.c 文件中),它会做 TCP header 检查等处理。
调用 _tcp_v4_lookup,查找该 package 的 open socket。如果找不到,该 package 会被丢弃。
接下来检查 socket 和 connection 的状态。
如果socket 和 connection 一切正常,调用 tcp_prequeue 使 package 从内核进入 user space,放进 socket 的 receive queue。然后 socket 会被唤醒,调用 system call,并最终调用 tcp_recvmsg 函数去从 socket recieve queue 中获取 segment。
接收端 - 应用层每当用户应用调用 read 或者 recvfrom 时,该调用会被映射为/net/socket.c 中的 sys_recv 系统调用,并被转化为 sys_recvfrom 调用,然后调用 sock_recgmsg 函数。
对于 INET 类型的 socket,/net/ipv4/af inet.c 中的 inet_recvmsg 方法会被调用,它会调用相关协议的数据接收方法。
对 TCP 来说,调用 tcp_recvmsg。该函数从 socket buffer 中拷贝数据到 user buffer。
对 UDP 来说,从 user space 中可以调用三个 system call recv()/recvfrom()/recvmsg() 中的任意一个来接收 UDP package,这些系统调用最终都会调用内核中的 udp_recvmsg 方法。
sk_buff 是什么(详解)
sk_buff 是 Linux 网络的一个核心数据结构,其定义文件在 skbuffer.h。
socket kernel buffer (skb) 是 Linux 内核网络栈(L2 到 L4)处理网络包(packets)所使用的 buffer,它的类型是 sk_buffer。简单来说,一个 skb 表示 Linux 网络栈中的一个 packet;TCP 分段和 IP 分组生产的多个 skb 被一个 skb list 形式来保存。
struct sock 有三个 skb 队列(sk_buffer queue),分别是 rx , tx 和 err。
struct sk_buff {
/* These two members must be first. */ # packet 可以存在于 list 或者 queue 中,这两个成员用于链表处理
struct sk_buff *next;
struct sk_buff *prev;
struct sk_buff_head *list; #该 packet 所在的 list
...
struct sock *sk; #跟该 skb 相关联的 socket
struct timeval stamp; # packet 发送或者接收的时间,主要用于 packet sniffers
struct net_device *dev; #这三个成员跟踪该 packet 相关的 devices,比如接收它的设备等
struct net_device *input_dev;
struct net_device *real_dev;
union { #指向各协议层 header 结构
struct tcphdr *th;
struct udphdr *uh;
struct icmphdr *icmph;
struct igmphdr *igmph;
struct iphdr *ipiph;
struct ipv6hdr *ipv6h;
unsigned char *raw;
} h;
union {
struct iphdr *iph;
struct ipv6hdr *ipv6h;
struct arphdr *arph;
unsigned char *raw;
} nh;
union {
unsigned char *raw;
} mac;
struct dst_entry *dst; #指向该 packet 的路由目的结构,告诉我们它会被如何路由到目的地
char cb[40]; # SKB control block,用于各协议层保存私有信息,比如 TCP 的顺序号和帧的重发状态
unsigned int len, #packet 的长度
data_len,
mac_len, # MAC header 长度
csum; # packet 的 checksum,用于计算保存在 protocol header 中的校验和。发送时,当 checksum offloading 时,不设置;接收时,可以由device计算
unsigned char local_df, #用于 IPV4 在已经做了分片的情况下的再分片,比如 IPSEC 情况下。
cloned:1, #在 skb 被 cloned 时设置,此时,skb 各成员是自己的,但是数据是shared的
nohdr:1, #用于支持 TSO
pkt_type, #packet 类型
ip_summed; # 网卡能支持的校验和计算的类型,NONE 表示不支持,HW 表示支持,
__u32 priority; #用于 QoS
unsigned short protocol, # 接收 packet 的协议
security;
Linux内核网络子系统中的核心数据结构skbuff进行分析,以2.6.21-7的内核来分析,其余版本可能存在差别。
以下几个与skbuff有关的问题:
1.几个长度有关的成员变量:skb->len,skb->data len,skb->truesize之间的关系,还包含skbheadlen(),skbpagelen()等,分别在何种环境下使用?
2.几个引用计数的区别:skb->users,skb->cloned,skb shared info->dataref:
3.几个指针的关系和移动:head/data/tail/end,h.raw,nh.raw,mac.raw;
4.与skb共享复制有关的几个操作有什么区别?
5.skb分配,释放的实现细节;网络子系统中会在哪些地方分配skb,有哪些区别?
6.skb的数据区分为哪几部分?为什么需要这么多种类,分别应用在何种场景?互相之间的转化关系如何?
当网络包被内核处理时,底层协议的数据被传送更高层,当数据传送时过程反过来。由不同协议产生的数据(包括头和负载)不断往下层传递直到它们最终被发送。因为这些操作的速度对于网络层的表现至关重要,内核使用一个特定的结构叫做 sk_buff, 其定义文件在 skbuffer.h。Socket buffer被用来在网络实现层交换数据而不用拷贝来获取数据包 –这显著获得速度收益。
猜你喜欢
- 2024-10-12 「观潮」4K HDR高动态范围制作技术(下)
- 2024-10-12 Linux 内核网络之 网络层发送消息:IP 分片
- 2024-10-12 如何利用eBPF程序监控Kubernetes 如何使用ebsco
- 2024-10-12 济南广播电视台4K IP HDR超高清电视转播车 应邀参加国际性体育赛事转播
- 2024-10-12 IP头情景分析 ip头部分析
- 2024-10-12 深入理解高性能网络开发路上的绊脚石 - 同步阻塞网络 IO
- 2024-10-12 Linux下AF-PACKET的V3版本 linux afs
- 2024-10-12 3000万像素与4K HDR视频?索尼A7 IV全幅微单最新消息汇总
- 2024-10-12 利用“socket”编程实现网络攻防 socket网络编程步骤
- 2024-10-12 揭秘 BPF map 前生今世 bp from
你 发表评论:
欢迎- 最近发表
- 标签列表
-
- oraclesql优化 (66)
- 类的加载机制 (75)
- feignclient (62)
- 一致性hash算法 (71)
- dockfile (66)
- 锁机制 (57)
- javaresponse (60)
- 查看hive版本 (59)
- phpworkerman (57)
- spark算子 (58)
- vue双向绑定的原理 (68)
- springbootget请求 (58)
- docker网络三种模式 (67)
- spring控制反转 (71)
- data:image/jpeg (69)
- base64 (69)
- java分页 (64)
- kibanadocker (60)
- qabstracttablemodel (62)
- java生成pdf文件 (69)
- deletelater (62)
- com.aspose.words (58)
- android.mk (62)
- qopengl (73)
- epoch_millis (61)
本文暂时没有评论,来添加一个吧(●'◡'●)