网站首页 > 技术文章 正文
之前基于python环境做了一些剩余使用寿命RUL估计的东西
NASA涡轮喷气发动机风扇的剩余寿命RUL预测-基于传统机器学习 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/528098659
NASA涡轮喷气发动机风扇的剩余寿命RUL预测-基于LSTM网络,Lookback=20 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/528324129
NASA涡轮喷气发动机风扇的剩余寿命RUL预测-几种不同方法的对比 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/528451358
本篇使用卷积神经网络CNN进行涡轮风扇发动机的剩余使用寿命RUL估计,主要讲解如何使用卷积神经网络 CNN)来预测涡轮风扇发动机的剩余使用寿命 (RUL)。 深度学习的优势在于模型无需通过手动特征提取或特征选择来预测 RUL。 此外,基于深度学习的 RUL 预测模型不需要信号处理的先验知识。
本篇使用涡轮风扇发动机退化仿真数据集,包含在运行条件和故障模式的不同组合下模拟的四个不同组(即 FD001、FD002、FD003、FD004)的运行到故障时间序列数据。本例仅使用 FD001 数据集,该数据集进一步分为训练集和测试集。 训练集包含 100 个发动机引擎的模拟时间序列数据,每个引擎都有几个传感器,并且对应于完整的run-to-failure样本。 测试集包含部分序列和每个序列结束时的剩余使用寿命的对应值。
数据文件夹现在包含由空格分隔的 26 列数字的文本文件, 每一行都是在单个运行周期中获取的数据,每一列代表一个不同的变量。
Column 1: Unit number
Column 2: Time-stamp
Columns 3–5: Operational settings
Columns 6–26: Sensor measurements 1–21
数据预处理
加载数据,返回一个包含训练预测变量和相应响应(即 RUL)序列的表, 每行代表一个发动机引擎
filenameTrainPredictors = fullfile(dataFolder,"train_FD001.txt");
rawTrain = localLoadData(filenameTrainPredictors);
检查其中一个引擎的run-to-failure数据
head(rawTrain.X{1},8)
查看其中一个引擎的响应数据
rawTrain.Y{1}(1:8)
可视化部分时间序列
删除Less Variability的特征
在所有时间步长上“保持近似不变”的特征会对训练产生负面影响。 使用prognosability函数来衡量失效时特征的variability(我也不想中文夹杂英文的)。
prog = prognosability(rawTrain.X,"timeStamp");
可以观察到,对于某些特征, prognosability等于零或 NaN,因此丢弃这些特征
idxToRemove = prog.Variables==0 | isnan(prog.Variables);
featToRetain = prog.Properties.VariableNames(~idxToRemove);
for i = 1:height(rawTrain)
rawTrain.X{i} = rawTrain.X{i}{:,featToRetain};
end
标准化数据
将训练预测变量归一化,使其均值和方差为零
[~,Xmu,Xsigma] = zscore(vertcat(rawTrain.X{:}));
preTrain = table();
for i = 1:numel(rawTrain.X)
preTrain.X{i} = (rawTrain.X{i} - Xmu) ./ Xsigma;
end
此外为了让卷积神经网络专注于引擎更可能发生故障(引擎生命周期结束)的数据部分,将响应进行clip剪裁
clipResponses = true;
if clipResponses
rulThreshold = 150;
for i = 1:numel(rawTrain.Y)
preTrain.Y{i} = min(rawTrain.Y{i},rulThreshold);
end
end
为了最大限度地减少添加到小批量的填充量,按序列长度对训练数据进行排序。 然后,选择一个 mini-batch 大小,它可以均匀地划分训练数据并减少 mini-batch 中的填充量,按序列长度对训练数据进行排序。
for i = 1:size(preTrain,1)
preTrain.X{i} = preTrain.X{i}'; %转置训练数据以在第一维中具有特征
preTrain.Y{i} = preTrain.Y{i}'; %转置对应于训练数据的响应
sequence = preTrain.X{i};
sequenceLengths(i) = size(sequence,2);
end
[sequenceLengths,idx] = sort(sequenceLengths,'descend');
XTrain = preTrain.X(idx);
YTrain = preTrain.Y(idx);
网络结构
输入数据以序列格式进行处理和排序,第1维表示特征数量,第2维表示时间序列长度。卷积层与批归一化层在一起,然后是激活层(relu),然后堆叠在一起进行特征提取。最后使用全连接层和回归层得到最终的 RUL 值作为输出。 所选网络架构仅沿时间序列方向应用一维(1D)卷积,这意味着特征的顺序不会影响训练,并且一次只考虑一个特征的趋势。
定义网络架构,创建一个 CNN,由5个连续的1D-卷积 、批量归一化和一个 relu 层组成,其中 filterSize 和 numFilters 作为卷积 1D-Layer 的前两个输入参数,然后是一个大小为 numHiddenUnits 的全连接层和一个 dropout 层(概率为 0.5)。由于网络预测涡扇发动机的剩余使用寿命(RUL),因此将第2个全连接层中的 numResponses 设置为 1,并将回归层设置为网络的最后一层。 为了补偿训练数据中不同的时间序列,使用 Padding="causal" 作为 convolution1dLayer 中的名称-值对输入参数。
numFeatures = size(XTrain{1},1);
numHiddenUnits = 100;
numResponses = 1;
layers = [
sequenceInputLayer(numFeatures)
convolution1dLayer(5,32,Padding="causal")
batchNormalizationLayer()
reluLayer()
convolution1dLayer(7,64,Padding="causal")
batchNormalizationLayer
reluLayer()
convolution1dLayer(11,128,Padding="causal")
batchNormalizationLayer
reluLayer()
convolution1dLayer(13,256,Padding="causal")
batchNormalizationLayer
reluLayer()
convolution1dLayer(15,512,Padding="causal")
batchNormalizationLayer
reluLayer()
fullyConnectedLayer(numHiddenUnits)
reluLayer()
dropoutLayer(0.5)
fullyConnectedLayer(numResponses)
regressionLayer()];
训练网络
指定训练参数。 使用“adam”优化器,指定学习率 0.01。 为防止梯度爆炸,将梯度阈值设置为 1。
maxEpochs = 30;
miniBatchSize = 20;
options = trainingOptions('adam',...
LearnRateSchedule='piecewise',...
MaxEpochs=maxEpochs,...
MiniBatchSize=miniBatchSize,...
InitialLearnRate=0.01,...
GradientThreshold=1,...
Shuffle='never',...
Plots='training-progress',...
Verbose=0);
使用trainNetwork.进行网络训练
net = trainNetwork(XTrain,YTrain,layers,options);
可视化网络结构
figure;
lgraph = layerGraph(net.Layers);
plot(lgraph)
网络测试
测试数据包含 100 个部分序列和每个序列结束时剩余使用寿命RUL的对应值
filenameTestPredictors = fullfile(dataFolder,'test_FD001.txt');
filenameTestResponses = fullfile(dataFolder,'RUL_FD001.txt');
dataTest = localLoadData(filenameTestPredictors,filenameTestResponses);
通过执行与训练数据集相同的预处理步骤,为预测准备测试数据集
for i = 1:numel(dataTest.X)
dataTest.X{i} = dataTest.X{i}{:,featToRetain};
dataTest.X{i} = (dataTest.X{i} - Xmu) ./ Xsigma;
if clipResponses
dataTest.Y{i} = min(dataTest.Y{i},rulThreshold);
end
end
创建一个用于存储预测响应 (YPred) 和真实响应 (Y) 的表, 使用 predict函数对测试数据进行预测
predictions = table(Size=[height(dataTest) 2],VariableTypes=["cell","cell"],VariableNames=["Y","YPred"]);
for i=1:height(dataTest)
unit = dataTest.X{i}';
predictions.Y{i} = dataTest.Y{i}';
predictions.YPred{i} = predict(net,unit,MiniBatchSize=1);
end
性能指标
计算测试序列所有时间周期的均方根误差 (RMSE),以比较网络在测试数据上的执行情况
for i = 1:size(predictions,1)
predictions.RMSE(i) = sqrt(mean((predictions.Y{i} - predictions.YPred{i}).^2));
end
直方图有助于可视化所有测试引擎中 RMSE 值的分布
figure;
histogram(predictions.RMSE,NumBins=10);
title("RMSE ( Mean: " + round(mean(predictions.RMSE),2) + " , StDev: " + round(std(predictions.RMSE),2) + " )");
ylabel('Frequency');
xlabel('RMSE');
绘制预测的 RUL 与真实的 RUL
完整的代码及数据见如下链接
https://mianbaoduo.com/o/bread/mbd-Y5iXm5hr
参考文献
X. Li, Q. Ding, and J.-Q. Sun, “Remaining useful life estimation in prognostics using deep convolution neural networks,” Reliability Engineering & System Safety, vol. 172, pp. 1–11, Apr. 2018
Saxena, Abhinav, Kai Goebel. "Turbofan Engine Degradation Simulation Data Set." NASA Ames Prognostics Data Repository https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#turbofan, NASA Ames Research Center, Moffett Field, CA
猜你喜欢
- 2024-10-12 如何将“机器学习”引入自动化?原来只需要这三步
- 2024-10-12 我是如何从动力机械专业转行到算法工程师,完成薪资翻倍!
- 2024-10-12 从应用的角度来看,深度学习怎样快速入门?
- 2024-10-12 使用原始振动数据的滚动元件轴承的基于LSTM的状态监测和故障预测
- 2024-10-12 良心推荐!机器学习和深度学习最佳框架
- 2024-10-12 基于matlab使用机器学习和深度学习进行雷达目标分类
- 2024-10-12 MATLAB环境下基于深度学习的人体动作识别(Sequence to Sequence)
- 2024-10-12 Matlab和Python环境下的深度学习小项目(第二篇)
- 2024-10-12 Matlab和Python环境下的深度学习小项目
- 2024-10-12 基于长短时记忆网络LSTM的TE过程故障诊断(MATLAB R2021B)
你 发表评论:
欢迎- 最近发表
-
- 在 Spring Boot 项目中使用 activiti
- 开箱即用-activiti流程引擎(active 流程引擎)
- 在springBoot项目中整合使用activiti
- activiti中的网关是干什么的?(activiti包含网关)
- SpringBoot集成工作流Activiti(完整源码和配套文档)
- Activiti工作流介绍及使用(activiti工作流会签)
- SpringBoot集成工作流Activiti(实际项目演示)
- activiti工作流引擎(activiti工作流引擎怎么用)
- 工作流Activiti初体验及在数据库中生成的表
- Activiti工作流浅析(activiti6.0工作流引擎深度解析)
- 标签列表
-
- oraclesql优化 (66)
- 类的加载机制 (75)
- feignclient (62)
- 一致性hash算法 (71)
- dockfile (66)
- 锁机制 (57)
- javaresponse (60)
- 查看hive版本 (59)
- phpworkerman (57)
- spark算子 (58)
- vue双向绑定的原理 (68)
- springbootget请求 (58)
- docker网络三种模式 (67)
- spring控制反转 (71)
- data:image/jpeg (69)
- base64 (69)
- java分页 (64)
- kibanadocker (60)
- qabstracttablemodel (62)
- java生成pdf文件 (69)
- deletelater (62)
- com.aspose.words (58)
- android.mk (62)
- qopengl (73)
- epoch_millis (61)
本文暂时没有评论,来添加一个吧(●'◡'●)