网站首页 > 技术文章 正文
学习spark,主要要了解Rdd算子的操作,算子分为两类,变换算子和行动算子,今天主要给大家总结一下变换算子Transformation,变换算子并不提交作业。
一、Transformations算子
主要介绍开发中较为常用的Transformations算子
(1)map
将原来Rdd的每个数据项通过map中的用户自定义函数映射为一个新的元素。源码中map算子相当于初始化一个rdd, 新 RDD 叫做 MappedRDD(this, sc.clean(f))。下图中每个方框表示一个 RDD 分区,左侧的分区经过用户自定义函数 f:T->U 映射为右侧的新 RDD 分区。但是,实际只有等到 Action算子触发后,这个 f 函数才会和其他函数在一个stage 中对数据进行运算。在图 中的第一个分区,数据记录 V1 输入 f,通过 f 转换输出为转换后的分区中的数据记录 V'1。
代码测试
(2)flatMap
将原来 RDD 中的每个元素通过函数 f 转换为新的元素,并将生成的 RDD 的每个集合中的元素合并为一个集合,内部创建 FlatMappedRDD(this,sc.clean(f))。
下图 表 示 RDD 的 一 个 分 区 ,进 行 flatMap函 数 操 作, flatMap 中 传 入 的 函 数 为 f:T->U, T和 U 可以是任意的数据类型。将分区中的数据通过用户自定义函数 f 转换为新的数据。外部大方框可以认为是一个 RDD 分区,小方框代表一个集合。 V1、 V2、 V3 在一个集合作为 RDD 的一个数据项,可能存储为数组或其他容器,转换为V'1、 V'2、 V'3 后,将原来的数组或容器结合拆散,拆散的数据形成为 RDD 中的数据项。
代码测试
(3)mapPartitions
mapPartitions 函 数 获 取 到 每 个 分 区 的 迭 代器,在 函 数 中 通 过 这 个 分 区 整 体 的 迭 代 器 对整 个 分 区 的 元 素 进 行 操 作。 内 部 实 现 是 生 成
MapPartitionsRDD。图 3 中的方框代表一个 RDD 分区。图 中,用户通过函数 f (iter)=>iter.f ilter(_>=3) 对分区中所有数据进行过滤,大于和等于 3 的数据保留。一个方块代表一个 RDD 分区,含有 1、 2、 3 的分区过滤只剩下元素 3
代码测试
(4)Union
使用 union 函数时需要保证两个 RDD 元素的数据类型相同,返回的 RDD 数据类型和被合并的 RDD 元素数据类型相同,并不进行去重操作,保存所有元素。如果想去重
可以使用 distinct()。同时 Spark 还提供更为简洁的使用 union 的 API,通过 ++ 符号相当于 union 函数操作。
图 中左侧大方框代表两个 RDD,大方框内的小方框代表 RDD 的分区。右侧大方框代表合并后的 RDD,大方框内的小方框代表分区。
含有V1、V2、U1、U2、U3、U4的RDD和含有V1、V8、U5、U6、U7、U8的RDD合并所有元素形成一个RDD。V1、V1、V2、V8形成一个分区,U1、U2、U3、U4、U5、U6、U7、U8形成一个分区。
代码测试
(5)groupBy
groupBy :将元素通过函数生成相应的 Key,数据就转化为 Key-Value 格式,之后将 Key 相同的元素分为一组。图中方框代表一个 RDD 分区,相同key 的元素合并到一个组。例如 V1 和 V2 合并为 V, Value 为 V1,V2。形成 V,Seq(V1,V2)。
代码测试
(6)Filter
filter 函数功能是对元素进行过滤,对每个 元 素 应 用 f 函 数, 返 回 值 为 true 的 元 素 在RDD 中保留,返回值为 false 的元素将被过滤掉。 内 部 实 现 相 当 于 生 成 FilteredRDD(this,sc.clean(f))。图 中每个方框代表一个 RDD 分区, T 可以是任意的类型。通过用户自定义的过滤函数 f,对每个数据项操作,将满足条件、返回结果为 true 的数据项保留。例如,过滤掉 V2 和 V3 保留了 V1,为区分命名为 V'1。
代码测试
(7)Distinct
distinct将RDD中的元素进行去重操作。图中的每个方框代表一个RDD分区,通过distinct函数,将数据去重。 例如,重复数据V1、 V1去重后只保留一份V1。
代码测试
(8)Cache
cache 将 RDD 元素从磁盘缓存到内存。 相当于 persist(MEMORY_ONLY) 函数的功能。
图中每个方框代表一个 RDD 分区,左侧相当于数据分区都存储在磁盘,通过 cache 算子将数据缓存在内存。
代码测试
(9)Persist
disk 代表存储在磁盘, mem 代表存储在内存。数据最初全部存储在磁盘,通过 persist(MEMORY_AND_DISK) 将数据缓存到内存,但是有的分区无法容纳在内存,将含有 V1、 V2、 V3 的RDD存储到磁盘,将含有U1,U2的RDD仍旧存储在内存。
代码测试
(10)mapValues
mapValues :针对(Key, Value)型数据中的 Value 进行 Map 操作,而不对 Key 进行处理。图 中的方框代表 RDD 分区。 a=>a+2 代表对 (V1,1) 这样的 Key Value 数据对,数据只对 Value 中的 1 进行加 2 操作,返回结果为 3。
代码测试
(11)reduceByKey
reduceByKey 是比 combineByKey 更简单的一种情况,只是两个值合并成一个值,( Int, Int V)to (Int, Int C),比如叠加。所以 createCombiner reduceBykey 很简单,就是直接返回 v,而 mergeValue和 mergeCombiners 逻辑是相同的,没有区别。图中的方框代表 RDD 分区。通过用户自定义函数 (A,B) => (A + B) 函数,将相同 key 的数据 (V1,2) 和 (V1,1) 的 value 相加运算,结果为( V1,3)。
代码测试
(12) Join
join 对两个需要连接的 RDD 进行 cogroup函数操作,将相同 key 的数据能够放到一个分区, 图 中是对两个 RDD 的 join 操作示意图。大方框代表 RDD,小方框代表 RDD 中的分区。函数对相同 key 的元素,如 V1 为 key 做连接后结果为 (V1,(1,1)) 和 (V1,(1,2))。
代码测试
二、总结
主要给大家介绍了spark开发中常用到的变换算子,如果大家有大数据技术类的问题,或者需要本屌丝写关于哪种技术的文章,欢迎在评论里面留言,我会一一回复,希望跟大家共同努力,共同进步
猜你喜欢
- 2024-10-12 大佬用10小时就把Spark讲完了,附6大技术文档
- 2024-10-12 浅析图数据库 Nebula Graph 数据导入工具——Spark Writer
- 2024-10-12 Spark Streaming 和 Flink 谁是数据开发者的最爱?
- 2024-10-12 分享几点 Spark Streaming 调优实践经验
- 2024-10-12 大数据学习之计算天下——SPARK的那些事
- 2024-10-12 第二篇|Spark core编程指南 spark编程软件
- 2024-10-12 Spark计算引擎 spark是基于什么计算引擎
- 2024-10-12 Spark Shuffle机制 sparkshuffle原理
- 2024-10-12 一文带你了解SparkStreaming窗口函数
- 2024-10-12 深度预警:Spark运行原理 简述spark的运行架构和原理
你 发表评论:
欢迎- 最近发表
- 标签列表
-
- oraclesql优化 (66)
- 类的加载机制 (75)
- feignclient (62)
- 一致性hash算法 (71)
- dockfile (66)
- 锁机制 (57)
- javaresponse (60)
- 查看hive版本 (59)
- phpworkerman (57)
- spark算子 (58)
- vue双向绑定的原理 (68)
- springbootget请求 (58)
- docker网络三种模式 (67)
- spring控制反转 (71)
- data:image/jpeg (69)
- base64 (69)
- java分页 (64)
- kibanadocker (60)
- qabstracttablemodel (62)
- java生成pdf文件 (69)
- deletelater (62)
- com.aspose.words (58)
- android.mk (62)
- qopengl (73)
- epoch_millis (61)
本文暂时没有评论,来添加一个吧(●'◡'●)