网站首页 > 技术文章 正文
大家好,我是简简单单做算法。今天介绍基于遗传优化的CNN-GRU-Attention的时间序预测。
CNN-GRU-Attention模型主要通过卷积层、GRU层以及注意力机制结合得到一个混合深度学习网络模型,然后通过遗传算法进行优化。这里对比标准网络模型和基于遗传优化的网络模型,优化过程仿真非常慢,这里就不演示了。
最后运行完之后,两个算法的结果会保存到R1和R2里面,直接点击compared可以看到这么一个结果。优化之前看到预测值和真实值的差值较大,它的误差均值为3.5306,而通过GA优化之后,它的差值的均值是1.1218。在曲线上可以看到预测值和真实值也更加吻合。
演示完毕,谢谢大家。
猜你喜欢
- 2024-10-12 一文了解人工智能该如何入门 学人工智能的步骤
- 2024-10-12 微信公众号文章质量评分算法详解 公众号文章质量怎么提高
- 2024-10-12 深度学习视频理解(分类识别)算法梳理
- 2024-10-12 「网易云音乐」歌单推荐算法:技术同学体验反推
- 2024-10-12 深度神经网络GRU模型实战:教你两小时打造随身AI翻译官
- 2024-10-12 基于GWO灰狼优化的CNN-GRU-Attention
- 2024-10-12 基于PSO优化的CNN-GRU-Attention的时间序列
- 2024-10-12 时域卷积网络TCN详解:使用卷积进行序列建模和预测
- 2024-10-12 计算机,通信,算法 通信算法和计算机算法
- 2024-10-12 基于PSO粒子群优化的CNN-GRU的时间序列回归预测
你 发表评论:
欢迎- 最近发表
-
- 在 Spring Boot 项目中使用 activiti
- 开箱即用-activiti流程引擎(active 流程引擎)
- 在springBoot项目中整合使用activiti
- activiti中的网关是干什么的?(activiti包含网关)
- SpringBoot集成工作流Activiti(完整源码和配套文档)
- Activiti工作流介绍及使用(activiti工作流会签)
- SpringBoot集成工作流Activiti(实际项目演示)
- activiti工作流引擎(activiti工作流引擎怎么用)
- 工作流Activiti初体验及在数据库中生成的表
- Activiti工作流浅析(activiti6.0工作流引擎深度解析)
- 标签列表
-
- oraclesql优化 (66)
- 类的加载机制 (75)
- feignclient (62)
- 一致性hash算法 (71)
- dockfile (66)
- 锁机制 (57)
- javaresponse (60)
- 查看hive版本 (59)
- phpworkerman (57)
- spark算子 (58)
- vue双向绑定的原理 (68)
- springbootget请求 (58)
- docker网络三种模式 (67)
- spring控制反转 (71)
- data:image/jpeg (69)
- base64 (69)
- java分页 (64)
- kibanadocker (60)
- qabstracttablemodel (62)
- java生成pdf文件 (69)
- deletelater (62)
- com.aspose.words (58)
- android.mk (62)
- qopengl (73)
- epoch_millis (61)
本文暂时没有评论,来添加一个吧(●'◡'●)