计算机系统应用教程网站

网站首页 > 技术文章 正文

6000星人气深度学习资源!架构模型技巧全都有,大牛LeCun推荐

btikc 2024-09-02 16:54:49 技术文章 12 ℃ 0 评论

铜灵 发自 凹非寺

量子位 出品 | 公众号 QbitAI

暑假即将到来,不用来充电学习岂不是亏大了。

有这么一份干货,汇集了机器学习架构模型的经典知识点,还有各种TensorFlowPyTorch的Jupyter Notebook笔记资源,地址都在,无需等待即可取用。

除了取用方便,这份名为Deep Learning Models的资源还尤其全面

针对每个细分知识点的介绍还尤其全面的,比如在卷积神经网络部分,作者就由浅及深分别介绍了AlexNet、VGG、ResNet等。

干货发布后,在GitHub短时间获得了6000+颗星星,迅速聚集起大量人气。



图灵奖得主、AI大牛Yann LeCun也强烈推荐,夸赞其为一份不错的PyTorch和TensorFlow Jupyter笔记本推荐!



这份资源的作者来头也不小,他是威斯康星大学麦迪逊分校的助理教授Sebastian Raschka,此前还编写过Python Machine Learning一书。



话不多说现在进入干货时间,好东西太多篇幅较长,记得先码后看

原资源地址:

https://github.com/rasbt/deeplearning-models

干货来也

1、多层感知机

多层感知机简称MLP,是一个打基础的知识点:

多层感知机:

TensorFlow版Jupyter Notebook

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-basic.ipynb

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-basic.ipynb

增加了Dropout部分的多层感知机:

TensorFlow版Jupyter Notebook

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-dropout.ipynb

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-dropout.ipynb

具备批标准化的多层感知机:

TensorFlow版Jupyter Notebook

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-batchnorm.ipynb

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-batchnorm.ipynb

从零开始了解多层感知机与反向传播:

TensorFlow版Jupyter Notebook

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-lowlevel.ipynb

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-fromscratch__sigmoid-mse.ipynb

2、卷积神经网络

在卷积神经网络这一部分,细碎的知识点很多,包含基础概念、全卷积网络、AlexNet、VGG等多个内容。来看干货:

卷积神经网络基础入门:

TensorFlow版Jupyter Notebook

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-basic.ipynb

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-basic.ipynb

卷积神经网络的初始化:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-he-init.ipynb

想用等效卷积层替代全连接的话看看下面这个:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/fc-to-conv.ipynb

全卷积神经网络基础知识在这里:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-allconv.ipynb

Alexnet网络模型在CIFAR-10数据集上的实现:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-alexnet-cifar10.ipynb

关于VGG模型,你可能需要了解VGG-16架构:

TensorFlow版Jupyter Notebook

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-vgg16.ipynb

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16.ipynb

在CelebA上训练的VGG-16性别分类器:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba.ipynb

VGG19网络架构:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg19.ipynb

关于2015年被提出的经典CNN模型ResNet,最厉害的资源也在这了。

比如ResNet和残差块:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/resnet-ex-1.ipynb

用MNIST数据集训练的ResNet-18数字分类器:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-mnist.ipynb

用人脸属性数据集CelebA训练的ResNet-18性别分类器:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-celeba-dataparallel.ipynb

在MNIST上训练的ResNet-34:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-mnist.ipynb

在CelebA上训练ResNet-34性别分类器:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-celeba-dataparallel.ipynb

在MNIST上训练的ResNet-50数字分类器:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-mnist.ipynb

在CelebA上训练ResNet-50性别分类器:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-celeba-dataparallel.ipynb

在CelebA上训练ResNet-101性别分类器:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet101-celeba.ipynb

在CelebA上训练ResNet-152性别分类器:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet152-celeba.ipynb

CIFAR-10分类器中的网络:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/nin-cifar10.ipynb

3、指标学习

具有多层感知机的孪生网络:

TensorFlow版Jupyter Notebook

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/metric/siamese-1.ipynb

4、自编码器

在自编码器这一部分,同样有很多细分类别需要学习,注意留出充足时间学习这一内容。

自编码器的种类很多,比如全连接自编码器:

TensorFlow版Jupyter Notebook

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-basic.ipynb

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-basic.ipynb

还有卷积自编码器。比如这个反卷积(转置卷积)卷积自编码器:

TensorFlow版Jupyter Notebook

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-deconv.ipynb

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv.ipynb

没有进行池化的反卷积自编码器:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv-nopool.ipynb

有最近邻插值的卷积自编码器:

TensorFlow版Jupyter Notebook

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-conv-nneighbor.ipynb

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor.ipynb

在CelebA上训练过的有最近邻插值的卷积自编码器:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-celeba.ipynb

在谷歌涂鸦数据集Quickdraw上训练过的有最近邻插值的卷积自编码器:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-quickdraw-1.ipynb

变分自编码器也是自编码器中的重要一类:

变分自编码器基础介绍:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-var.ipynb

卷积变分自编码器:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-var.ipynb

最后,还有条件变分自编码器也需要关注。比如在重建损失中有标签的:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae.ipynb

没有标签的:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae_no-out-concat.ipynb

有标签的条件变分自编码器:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae.ipynb

没有标签的条件变分自编码器:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae_no-out-concat.ipynb

5、生成对抗网络(GAN)

在MNIST上的全连接GAN:

TensorFlow版Jupyter Notebook

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan.ipynb

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan.ipynb

在MNIST上训练的条件GAN:

TensorFlow版Jupyter Notebook

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan-conv.ipynb

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv.ipynb

用Label Smoothing方法优化过的条件GAN:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv-smoothing.ipynb

6、循环神经网络

针对多对一的情绪分析和分类问题中,包括简单单层RNN:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_imdb.ipynb

压缩序列的简单单层RNN:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_packed_imdb.ipynb

RNN和LSTM技术:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_imdb.ipynb

基于GloVe预训练词向量的有LSTM核的RNN:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_imdb-glove.ipynb

GRU核的RNN:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb

多层双向RNN:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb

一对多/序列到序列的生成新文本的字符RNN:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb

7、有序回归

针对不同场景,有三类有序回归干货:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-coral-afadlite.ipynb

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-niu-afadlite.ipynb

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-niu-afadlite.ipynb

8、方法和技巧

关于周期性学习速率,这里也有一份小技巧:

PyTorch版

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/tricks/cyclical-learning-rate.ipynb

9、PyTorch Workflow和机制

用自定义数据集加载PyTorch,这里也有一些攻略:

比如用CelebA中的人脸图像:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-celeba.ipynb

比如用街景数据集:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-svhn.ipynb

比如用Quickdraw:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-quickdraw.ipynb

在训练和预处理环节,标准化图像可参考:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-standardized.ipynb

图像信息样本:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/torchvision-transform-examples.ipynb

有文本文档的Char-RNN :

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb

在CelebA上训练的VGG-16性别分类器的并行计算等:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba-data-parallel.ipynb

10、TensorFlow Workflow与机制

这是这份干货中的最后一个大分类,包含自定义数据集、训练和预处理两大部分。

内容包括:

将NumPy NPZ用于小批量训练图像数据集

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-npz.ipynb

用HDF5文件存储图像数据集,用于小规模训练

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-hdf5.ipynb

用输入pipeline从TFRecords文件中读取数据

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/tfrecords.ipynb

TensorFlow数据集API

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/dataset-api.ipynb

如果需要从TensorFlow Checkpoint文件和NumPy NPZ Archive中存储和加载训练模型,可移步:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/saving-and-reloading-models.ipynb

11、传统机器学习

最后,如果你是从零开始入门,可以从传统机器学习看起。包括感知机、逻辑回归和Softmax回归等。

感知机部分TensorFlow版Jupyter Notebook

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/perceptron.ipynb

PyTorch版笔记

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/perceptron.ipynb

逻辑回归部分也是一样:

逻辑回归部分部分TensorFlow版Jupyter Notebooks

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/logistic-regression.ipynb

PyTorch版笔记

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/logistic-regression.ipynb

Softmax回归,也称为多项逻辑回归:

Softmax回归部分部分TensorFlow版Jupyter Notebook

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/softmax-regression.ipynb

PyTorch版笔记

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/softmax-regression.ipynb

传送门

这份干货满满的资源到这里就结束了,再次放上原文传送门:

https://github.com/rasbt/deeplearning-models

超强干货,记得收藏~

— 完 —

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。

量子位 QbitAI · 头条号签约作者

?'?' ? 追踪AI技术和产品新动态

本文暂时没有评论,来添加一个吧(●'◡'●)

欢迎 发表评论:

最近发表
标签列表