网站首页 > 技术文章 正文
VGGNet是牛津大学视觉几何团队(Visual Geometry Group, VGG)开发的一组卷积神经网络算法,包括VGG-11、VGG-11-LRN、VGG-13、VGG-16和VGG-19。其中VGG-16是2014年ILSVRC物体识别算法的优胜者,其规模是AlexNet的2倍以上并拥有规律的结构,这里以VGG-16为例介绍其构筑。VGG-16的隐含层由13个卷积层、3个全连接层和5个池化层组成:
按如下方式构建:
- (3×3)×3×64的卷积层(步长为1,相同填充,ReLU),(3×3)×64×64的卷积层(步长为1,相同填充,ReLU),2×2极大池化(步长为2、无填充)
- (3×3)×64×128的卷积层(步长为1,相同填充,ReLU),(3×3)×128×128的卷积层(步长为1,相同填充,ReLU),2×2极大池化(步长为2、无填充)
- (3×3)×128×256的卷积层(步长为1,相同填充,ReLU),(3×3)×256×256的卷积层(步长为1,相同填充,ReLU),(3×3)×256×256的卷积层(步长为1,相同填充,ReLU),2×2极大池化(步长为2、无填充)
- (3×3)×256×512的卷积层(步长为1,相同填充,ReLU),(3×3)×512×512的卷积层(步长为1,相同填充,ReLU),(3×3)×512×512的卷积层(步长为1,相同填充,ReLU),2×2极大池化(步长为2、无填充)
- (3×3)×512×512的卷积层(步长为1,相同填充,ReLU),(3×3)×512×512的卷积层(步长为1,相同填充,ReLU),(3×3)×512×512的卷积层(步长为1,相同填充,ReLU),2×2极大池化(步长为2、无填充)
- 3个全连接层,神经元数量为4096、4096和1000
VGGNet构筑中仅使用3×3的卷积核并保持卷积层中输出特征图尺寸不变,通道数加倍,池化层中输出的特征图尺寸减半,简化了神经网络的拓扑结构并取得了良好效果。
VGGNet的优缺点
VGG优点
1、VGGNet的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)。
2、几个小滤波器(3x3)卷积层的组合比一个大滤波器(5x5或11x11)卷积层效果要好。
3、验证了通过不断加深网络结构可以提升性能。
VGG缺点
VGG耗费更多计算资源,并且使用了更多的参数(这里不是3x3卷积的锅),导致更多的内存占用(140M)。其中绝大多数的参数都是来自于第一个全连接层。
猜你喜欢
- 2024-10-15 深度学习之重读经典(六)MobileNet
- 2024-10-15 深度学习之重读经典(七)SENet 关于重读经典的名句
- 2024-10-15 一文看懂Keras和TensorFlow到底哪家强
- 2024-10-15 图像分类网络概述 关于常用的图像分类网络
- 2024-10-15 怎样利用VGG实现手写数字识别? 基于hog特征的手写数字识别
- 2024-10-15 照片解锁手机不能忍?教你用OpenCV做活体检测 | 有代码
- 2024-10-15 VGGNet vs ResNet:机器学习中的梯度消失问题
- 2024-10-15 VGGNet算法解释及举例 vgg网络的优缺点
- 2024-10-15 keras 人工智能之VGGNet神经网络的图片识别
- 2024-10-15 keras人工智能神经网络的VGGNet神经网络图片识别
你 发表评论:
欢迎- 最近发表
- 标签列表
-
- oraclesql优化 (66)
- 类的加载机制 (75)
- feignclient (62)
- 一致性hash算法 (71)
- dockfile (66)
- 锁机制 (57)
- javaresponse (60)
- 查看hive版本 (59)
- phpworkerman (57)
- spark算子 (58)
- vue双向绑定的原理 (68)
- springbootget请求 (58)
- docker网络三种模式 (67)
- spring控制反转 (71)
- data:image/jpeg (69)
- base64 (69)
- java分页 (64)
- kibanadocker (60)
- qabstracttablemodel (62)
- java生成pdf文件 (69)
- deletelater (62)
- com.aspose.words (58)
- android.mk (62)
- qopengl (73)
- epoch_millis (61)
本文暂时没有评论,来添加一个吧(●'◡'●)