网站首页 > 技术文章 正文
作用
dropout的原理就是在网络前向传播的时候,让神经元的激活值暂时以一定的概率变为零,注意是暂时,对于随机梯度下降来说,由于是随机丢弃,故而每一个mini-batch都在训练不同的网络,这样可以使模型的泛化性能更强。
dropout为什么可以防止过拟合呢?
1、dropout其实相当于我们日常用到的基于平均的ensemble,ensemble有两种方式,基于平均的ensemble和投票的ensemble。对于网络中的部分神经元暂时舍弃,这样相当于训练了多个网络。
2、dropout还取消了神经元之间的共适应关系,使得网络的输出不依赖于网络中的某些隐含节点的固定作用,使模型的鲁棒性更好。
训练场景与测试场景
dropout有两种权重缩放方式,一是在训练的时候对激活以后的值乘以1/(1-p) 或者在测试的时候乘以P。这样做的目的是保证训练和测试的时候数据的一致性。
————————————————
原文链接:https://blog.csdn.net/justsolow/article/details/105394688
猜你喜欢
- 2024-10-17 【Python深度学习系列】网格搜索神经网络超参数:丢弃率dropout
- 2024-10-17 中英趣译,用英文说对方“活该”才痛快!
- 2024-10-17 问题:ID:16145下列属于dropout特性的有()
- 2024-10-17 那些与out有关的英文表达! 与out有关的英语词组
- 2024-10-17 Dropout和标准化(Batch Normalization)
- 2024-10-17 麦克风将被静音,美网友都在猜:特朗普会如何应对?
- 2024-10-17 不只Dropout,刚刚,至少30项机器学习技术都变成了谷歌专利
- 2024-10-17 Dropout VS BN: 别在你的网络中使用Dropout
- 2024-10-17 让Dropout在图像超分领域重焕光彩
- 2024-10-17 神经网络中的损失函数正则化和 Dropout 并手写代码实现
你 发表评论:
欢迎- 11-19零基础学习!数据分析分类模型「支持向量机」
- 11-19机器学习 | 算法笔记(三)- 支持向量机算法以及代码实现
- 11-19我以前一直没有真正理解支持向量机,直到我画了一张图
- 11-19研一小姑娘分享机器学习之SVM支持向量机
- 11-19[机器学习] sklearn支持向量机
- 11-19支持向量机
- 11-19初探支持向量机:用大白话解释、原理详解、Python实现
- 11-19支持向量机的核函数
- 最近发表
- 标签列表
-
- oraclesql优化 (66)
- 类的加载机制 (75)
- feignclient (62)
- 一致性hash算法 (71)
- dockfile (66)
- 锁机制 (57)
- javaresponse (60)
- 查看hive版本 (59)
- phpworkerman (57)
- spark算子 (58)
- vue双向绑定的原理 (68)
- springbootget请求 (58)
- docker网络三种模式 (67)
- spring控制反转 (71)
- data:image/jpeg (69)
- base64 (69)
- java分页 (64)
- kibanadocker (60)
- qabstracttablemodel (62)
- java生成pdf文件 (69)
- deletelater (62)
- com.aspose.words (58)
- android.mk (62)
- qopengl (73)
- epoch_millis (61)
本文暂时没有评论,来添加一个吧(●'◡'●)