计算机系统应用教程网站

网站首页 > 技术文章 正文

你知道如何保障生产端100%消息投递成功吗?

btikc 2024-10-17 08:45:56 技术文章 6 ℃ 0 评论

欢迎关注头条号:老顾聊技术

精品原创技术分享,知识的组装工


目录

  1. 前言
  2. 分析问题
  3. 持久化
  4. confirm机制
  5. 消息提前持久化+定时任务

前言

我们小伙伴应该都听说够消息中间件MQ,如:RabbitMQ,RocketMQ,Kafka等。引入中间件的好处可以起到抗高并发,削峰,业务解耦的作用。

如上图:

1)订单服务投递消息给MQ中间件

2)物流服务监听MQ中间件消息,从而进行消费

我们这篇文章讨论一下,如何保障订单服务把消息成功投递给MQ中间件,以RabbitMQ举例。

分析问题

小伙伴们对此会有些疑问,订单服务发起消息服务,返回成功不就成功了吗?如下面的伪代码

上面代码中,一般发送消息就是这么写的,小伙伴们觉得有什么问题吗?

老顾说一个场景,如果MQ服务器突然宕机了会出现什么情况?是不是我们订单服务发过去的消息全部没有了吗?是的,一般MQ中间件为了提高系统的吞吐量会把消息保存在内存中,如果不作其他处理,MQ服务器一旦宕机,消息将全部丢失。这个是业务不允许的,造成很大的影响。

持久化

有经验的小伙伴会说,我知道一个方法就是把消息持久化,RabbitMQ中发消息的时候会有个durable参数可以设置,设置为true,就会持久化。

这样的话MQ服务器即使宕机,重启后磁盘文件中有消息的存储,这样就不会丢失了吧。是的这样就一定概率的保障了消息不丢失。

但还会有个场景,就是消息刚刚保存到MQ内存中,但还没有来得及更新到磁盘文件中,突然宕机了。(我靠,这个时间这么短,也会出现,概率太低了吧),这个场景在持续的大量消息投递的过程中,会很常见。

那怎么办?我们如何作才能保障一定会持久化到磁盘上面呢?

confirm机制

上面问题出现在,没有人告诉我们持久化是否成功。好在很多MQ有回调通知的特性,RabbitMQ就有confirm机制来通知我们是否持久化成功?

confirm机制的原理:

1)消息生产者把消息发送给MQ,如果接收成功,MQ会返回一个ack消息给生产者

2)如果消息接收不成功,MQ会返回一个nack消息给生产者

上面的伪代码,有两个处理消息方式,就是ack回调和nack回调。

这样是不是就可以保障100%消息不丢失了呢?

我们看一下confirm的机制,试想一下,如果我们生产者每发一条消息,都要MQ持久化到磁盘中,然后再发起ack或nack的回调。这样的话是不是我们MQ的吞吐量很不高,因为每次都要把消息持久化到磁盘中。写入磁盘这个动作是很慢的。这个在高并发场景下是不能够接受的,吞吐量太低了。

所以MQ持久化磁盘真实的实现,是通过异步调用处理的,他是有一定的机制,如:等到有几千条消息的时候,会一次性的刷盘到磁盘上面。而不是每来一条消息,就刷盘一次

所以comfirm机制其实是一个异步监听的机制,是为了保证系统的高吞吐量,这样就导致了还是不能够100%保障消息不丢失,因为即使加上了confirm机制,消息在MQ内存中还没有刷盘到磁盘就宕机了,还是没法处理。

说了这么多,还是没法确保,那怎么办呢???

消息提前持久化 + 定时任务

其实本质的原因是无法确定是否持久化?那我们是不是可以自己让消息持久化呢?答案是可以的,我们的方案再一步的演化。

上图流程:

1)订单服务生产者再投递消息之前,先把消息持久化到Redis或DB中,建议redis,高性能。消息的状态为发送中。

2)confirm机制监听消息是否发送成功?如ack成功消息,删除redis中此消息。

3)如果nack不成功的消息,这个可以根据自身的业务选择是否重发此消息。也可以删除此消息,由自己的业务决定。

4)这边加了个定时任务,来拉取隔一定时间了,消息状态还是为发送中的,这个状态就表明,订单服务是没有收到ack成功消息。

5)定时任务会作补偿性的投递消息。这个时候如果MQ回调ack成功接收了,再把redis中此消息删除。

这样的机制其实就是一个补偿机制,我不管MQ有没有真正的接收到,只要我的redis中的消息状态也是为【发送中】,就表示此消息没有正确成功投递。再启动定时任务去监控,发起补偿投递。

当然定时任务那边我们还可以加上一个补偿的次数,如果大于3次,还是没有收到ack消息,那就直接把消息的状态设置为【失败】,由人工去排查到底是为什么?

这样的话方案就比较完美了,保障了100%的消息不丢失(当然不包含磁盘也坏了,可以做主从方案)。

不过这样的方案,就会有可能发送多次相同的消息,很有可能MQ已经收到了消息,就是ack消息回调时出现网络故障,没有让生产者收到。那就要要求消费者一定在消费的时候保障幂等性。至于什么是幂等性,如何设计幂等?请看海量订单产生的业务高峰期,如何避免消息的重复消费? ,谢谢大家观看。


-End-

如有收获,请帮忙转发,您的鼓励是作者最大的动力,谢谢!

10几年的经验实战分享

相关微服务,分布式,高并发,高可用,企业实战,干货等原创文章正在路上

欢迎关注头条号:老顾聊技术

精品原创技术分享,知识的组装工

推荐阅读

1、你了解大型网站的页面静态化吗?

2、你知道如何更新缓存吗?如何保证缓存和数据库双写一致性?

3、你知道怎么解决DB读写分离,导致数据不一致问题吗?

4、DB读写分离情况下,如何解决缓存和数据库不一致性问题?

5、你真的知道怎么使用缓存吗?

6、如何利用锁,防止缓存击穿?重构思想的重要性

7、海量订单产生的业务高峰期,如何避免消息的重复消费?

本文暂时没有评论,来添加一个吧(●'◡'●)

欢迎 发表评论:

最近发表
标签列表