网站首页 > 技术文章 正文
安妮 编译整理
量子位 出品 | 公众号 QbitAI
今天有三件事挺有意思。
一是以“快到没朋友”著称的流行目标检测模型YOLO推出全新v3版,新版本又双叒叕提升了精度和速度。在实现相近性能时,YOLOv3比SSD速度提高3倍,比RetinaNet速度提高近4倍。
二是有细心网友发现,模型一作在arXiv上发布研究论文时,脑回路清奇地将自己这篇论文自引自用了一下。
三是……在小哥自引自用后没多久,arXiv官方账号宣布服务器由于不明原因挂掉了……
更快更强
先说更新这件正经事~
通过调整YOLO模型中的一些细节,v3模型增大了一些准确率也有所提升,速度依旧非常快。
对于320x320的图像,YOLOv3的检测速度可达22ms,mAP值可达28.2,与SSD的准确率相当但速度快3倍。
当用旧版.5 IOU mAP检测指标时,YOLOv3在英伟达TitanX显卡上51ms达到57.9AP50的性能。相比之下,RetinaNet则用198ms达到57.5AP50的性能,两者性能相近但速度相差近4倍。
△ 在实现相同准确度情况下,YOLOv3速度明显优于其他检测方法(单一变量实验)
△ 在COCO数据集上不同模型的运行情况对比
作者,和他的少女心
YOLOv3出自华盛顿大学的Joseph Redmon和Ali Farhadi之手。
Ali Farhadi是华盛顿大学的副教授,一作Joseph Redmon是他的博士生,曾在IBM实习,其实还当过电台DJ。Redmon是一个少女心有点爆棚的程序员,这里有一份他的简历,可以自行感受下。
处于不知名的原因,小哥有一些“独角兽情结”,可以再次感受下个人网站的画风——
“论文就该实在点”
如果单单是YOLOv3发布新版本,可能在Reddit上还达不到热度200的水平。有意思在,论文从头到尾都透露着“不太正经”的气息,比如作者自引自用论文,比如这个Introduction的开头——
自己今年没怎么做研究,花了很多时间在Twitter上,捣鼓了一下GAN。
没错,这真的是一篇arXiv上的论文。Redmon还在论文中写了写自己尝试但失败了的方法。结尾,也不忘调侃一下热点。
“还有一个更好地问题:‘我们如何使用检测器?’Facebook和Google的很多研究员也在做相关研究啊。我认为,我们至少能知道技术被应用在了有利的方面,并且不会被恶意利用并将它们卖给…等一下,你说这就是它的用途??Oh!”
Reddit上网友的称赞每篇论文都应该这样实在,小哥在Reddit已收获大批粉丝……
相关资料
对了,对论文有疑问还是不要去@作者了,反正对方也不会回,论文中都说了~
你可以选择冒险再回看研读一下论文和代码。
论文下载地址:
https://pjreddie.com/media/files/papers/YOLOv3.pdf
项目地址:
https://pjreddie.com/darknet/yolo/
相关代码:
https://github.com/pjreddie/darknet
不过你得小心。
毕竟……YOLO模型的全称可是You Only Look Once(只能看一眼),再看可能会被吃掉!
— 完 —
诚挚招聘
量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。
量子位 QbitAI · 头条号签约作者
?'?' ? 追踪AI技术和产品新动态
猜你喜欢
- 2024-10-19 MindSpore:YOLOv3人体目标检测模型实现(三)
- 2024-10-19 YOLOv3网络在车标检测中的应用 yolo 车辆
- 2024-10-19 [OpenCV实战]8 深度学习目标检测网络YOLOv3的训练
- 2024-10-19 1.3MB超轻YOLO算法!全平台通用,速度快上45%丨开源
- 2024-10-19 YOLOv3目标检测算法如何应用于图片检测?
- 2024-10-19 完爆全部YOLO家族!RT-DETRv3突破目标检测网络的极限!
- 2024-10-19 AAAI 2021中的目标检测(详细版with code)
- 2024-10-19 深度学习图像目标检测:读懂目前工业界最青睐的YOLO V3
- 2024-10-19 高大上的YOLOV3对象检测算法,使用python也可轻松实现
- 2024-10-19 目标检测和识别:Python+OpenCV+Yolov3
你 发表评论:
欢迎- 11-18软考系统分析师知识点十六:系统实现与测试
- 11-18第16篇 软件工程(四)过程管理与测试管理
- 11-18编程|实例(分书问题)了解数据结构、算法(穷举、递归、回溯)
- 11-18算法-减治法
- 11-18笑疯了!巴基斯坦首金!没有技巧全是蛮力!解说:真远啊!笑死!
- 11-18搜索算法之深度优先、广度优先、约束条件、限界函数及相应算法
- 11-18游戏中的优化指的的是什么?
- 11-18算法-分治法
- 最近发表
- 标签列表
-
- oraclesql优化 (66)
- 类的加载机制 (75)
- feignclient (62)
- 一致性hash算法 (71)
- dockfile (66)
- 锁机制 (57)
- javaresponse (60)
- 查看hive版本 (59)
- phpworkerman (57)
- spark算子 (58)
- vue双向绑定的原理 (68)
- springbootget请求 (58)
- docker网络三种模式 (67)
- spring控制反转 (71)
- data:image/jpeg (69)
- base64 (69)
- java分页 (64)
- kibanadocker (60)
- qabstracttablemodel (62)
- java生成pdf文件 (69)
- deletelater (62)
- com.aspose.words (58)
- android.mk (62)
- qopengl (73)
- epoch_millis (61)
本文暂时没有评论,来添加一个吧(●'◡'●)